当前位置:首页>java>Java Map中那些巧妙的设计

Java Map中那些巧妙的设计

  • 2026-02-08 04:17:25
Java Map中那些巧妙的设计

最近拜读了一些Java Map的相关源码,不得不惊叹于JDK开发者们的鬼斧神工。他山之石可以攻玉,这些巧妙的设计思想非常有借鉴价值,可谓是最佳实践。然而,大多数有关Java Map原理的科普类文章都是专注于“点”,并没有连成“线”,甚至形成“网状结构”。因此,本文基于个人理解,对所阅读的部分源码进行了分类与总结,归纳出Map中的几个核心特性,包括:自动扩容、初始化与懒加载、哈希计算、位运算与并发,并结合源码进行深入讲解,希望看完本文的你也能从中获取到些许收获(本文默认采用JDK1.8中的HashMap)。
一  自动扩容
最小可用原则,容量超过一定阈值便自动进行扩容。
扩容是通过resize方法来实现的。扩容发生在putVal方法的最后,即写入元素之后才会判断是否需要扩容操作,当自增后的size大于之前所计算好的阈值threshold,即执行resize操作。

通过位运算<<1进行容量扩充,即扩容1倍,同时新的阈值newThr也扩容为老阈值的1倍。

扩容时,总共存在三种情况:
  • 哈希桶数组中某个位置只有1个元素,即不存在哈希冲突时,则直接将该元素copy至新哈希桶数组的对应位置即可。

  • 哈希桶数组中某个位置的节点为树节点时,则执行红黑树的扩容操作。

  • 哈希桶数组中某个位置的节点为普通节点时,则执行链表扩容操作,在JDK1.8中,为了避免之前版本中并发扩容所导致的死链问题,引入了高低位链表辅助进行扩容操作。

在日常的开发过程中,会遇到一些bad case,比如:
HashMap hashMap = new HashMap(2);hashMap.put("1", 1);hashMap.put("2", 2);hashMap.put("3", 3);
当hashMap设置最后一个元素3的时候,会发现当前的哈希桶数组大小已经达到扩容阈值2*0.75=1.5,紧接着会执行一次扩容操作,因此,此类的代码每次运行的时候都会进行一次扩容操作,效率低下。在日常开发过程中,一定要充分评估好HashMap的大小,尽可能保证扩容的阈值大于存储元素的数量,减少其扩容次数。
二  初始化与懒加载
初始化的时候只会设置默认的负载因子,并不会进行其他初始化的操作,在首次使用的时候才会进行初始化。
当new一个新的HashMap的时候,不会立即对哈希数组进行初始化,而是在首次put元素的时候,通过resize()方法进行初始化。

resize()中会设置默认的初始化容量DEFAULT_INITIAL_CAPACITY为16,扩容的阈值为0.75*16 = 12,即哈希桶数组中元素达到12个便进行扩容操作。
最后创建容量为16的Node数组,并赋值给成员变量哈希桶table,即完成了HashMap的初始化操作。

三  哈希计算
哈希表以哈希命名,足以说明哈希计算在该数据结构中的重要程度。而在实现中,JDK并没有直接使用Object的native方法返回的hashCode作为最终的哈希值,而是进行了二次加工。
以下分别为HashMap与ConcurrentHashMap计算hash值的方法,核心的计算逻辑相同,都是使用key对应的hashCode与其hashCode右移16位的结果进行异或操作。此处,将高16位与低16位进行异或的操作称之为扰动函数,目的是将高位的特征融入到低位之中,降低哈希冲突的概率。

举个例子来理解下扰动函数的作用:
hashCode(key1) = 0000 0000 0000 1111 0000 0000 0000 0010hashCode(key2) = 0000 0000 0000 0000 0000 0000 0000 0010
若HashMap容量为4,在不使用扰动函数的情况下,key1与key2的hashCode注定会冲突(后两位相同,均为01)。
经过扰动函数处理后,可见key1与key2 hashcode的后两位不同,上述的哈希冲突也就避免了。
hashCode(key1) ^ (hashCode(key1) >>> 16)0000 0000 0000 1111 0000 0000 0000 1101hashCode(key2) ^ (hashCode(key2) >>> 16)0000 0000 0000 0000 0000 0000 0000 0010
这种增益会随着HashMap容量的减少而增加。《An introduction to optimising a hashing strategy》文章中随机选取了哈希值不同的352个字符串,当HashMap的容量为2^9时,使用扰动函数可以减少10%的碰撞,可见扰动函数的必要性。
此外,ConcurrentHashMap中经过扰乱函数处理之后,需要与HASH_BITS做与运算,HASH_BITS为0x7ffffff,即只有最高位为0,这样运算的结果使hashCode永远为正数。在ConcurrentHashMap中,预定义了几个特殊节点的hashCode,如:MOVED、TREEBIN、RESERVED,它们的hashCode均定义为负值。因此,将普通节点的hashCode限定为正数,也就是为了防止与这些特殊节点的hashCode产生冲突。
1  哈希冲突
通过哈希运算,可以将不同的输入值映射到指定的区间范围内,随之而来的是哈希冲突问题。考虑一个极端的case,假设所有的输入元素经过哈希运算之后,都映射到同一个哈希桶中,那么查询的复杂度将不再是O(1),而是O(n),相当于线性表的顺序遍历。因此,哈希冲突是影响哈希计算性能的重要因素之一。哈希冲突如何解决呢?主要从两个方面考虑,一方面是避免冲突,另一方面是在冲突时合理地解决冲突,尽可能提高查询效率。前者在上面的章节中已经进行介绍,即通过扰动函数来增加hashCode的随机性,避免冲突。针对后者,HashMap中给出了两种方案:拉链表与红黑树。
拉链表
在JDK1.8之前,HashMap中是采用拉链表的方法来解决冲突,即当计算出的hashCode对应的桶上已经存在元素,但两者key不同时,会基于桶中已存在的元素拉出一条链表,将新元素链到已存在元素的前面。当查询存在冲突的哈希桶时,会顺序遍历冲突链上的元素。同一key的判断逻辑如下图所示,先判断hash值是否相同,再比较key的地址或值是否相同。

(1)死链
在JDK1.8之前,HashMap在并发场景下扩容时存在一个bug,形成死链,导致get该位置元素的时候,会死循环,使CPU利用率高居不下。这也说明了HashMap不适于用在高并发的场景,高并发应该优先考虑JUC中的ConcurrentHashMap。然而,精益求精的JDK开发者们并没有选择绕过问题,而是选择直面问题并解决它。在JDK1.8之中,引入了高低位链表(双端链表)。
什么是高低位链表呢?在扩容时,哈希桶数组buckets会扩容一倍,以容量为8的HashMap为例,原有容量8扩容至16,将[0, 7]称为低位,[8, 15]称为高位,低位对应loHead、loTail,高位对应hiHead、hiTail。
扩容时会依次遍历旧buckets数组的每一个位置上面的元素:
  • 若不存在冲突,则重新进行hash取模,并copy到新buckets数组中的对应位置。

  • 若存在冲突元素,则采用高低位链表进行处理。通过e.hash & oldCap来判断取模后是落在高位还是低位。举个例子:假设当前元素hashCode为0001(忽略高位),其运算结果等于0,说明扩容后结果不变,取模后还是落在低位[0, 7],即0001 & 1000 = 0000,还是原位置,再用低位链表将这类的元素链接起来。假设当前元素的hashCode为1001, 其运算结果不为0,即1001 & 1000 = 1000 ,扩容后会落在高位,新的位置刚好是旧数组索引(1) + 旧数据长度(8) = 9,再用高位链表将这些元素链接起来。最后,将高低位链表的头节点分别放在扩容后数组newTab的指定位置上,即完成了扩容操作。这种实现降低了对共享资源newTab的访问频次,先组织冲突节点,最后再放入newTab的指定位置。避免了JDK1.8之前每遍历一个元素就放入newTab中,从而导致并发扩容下的死链问题。

红黑树
在JDK1.8之中,HashMap引入了红黑树来处理哈希冲突问题,而不再是拉链表。那么为什么要引入红黑树来替代链表呢?虽然链表的插入性能是O(1),但查询性能确是O(n),当哈希冲突元素非常多时,这种查询性能是难以接受的。因此,在JDK1.8中,如果冲突链上的元素数量大于8,并且哈希桶数组的长度大于64时,会使用红黑树代替链表来解决哈希冲突,此时的节点会被封装成TreeNode而不再是Node(TreeNode其实继承了Node,以利用多态特性),使查询具备O(logn)的性能。
这里简单地回顾一下红黑树,它是一种平衡的二叉树搜索树,类似地还有AVL树。两者核心的区别是AVL树追求“绝对平衡”,在插入、删除节点时,成本要高于红黑树,但也因此拥有了更好的查询性能,适用于读多写少的场景。然而,对于HashMap而言,读写操作其实难分伯仲,因此选择红黑树也算是在读写性能上的一种折中。
四  位运算
1  确定哈希桶数组大小
找到大于等于给定值的最小2的整数次幂。
tableSizeFor根据输入容量大小cap来计算最终哈希桶数组的容量大小,找到大于等于给定值cap的最小2的整数次幂。乍眼一看,这一行一行的位运算让人云里雾里,莫不如采用类似找规律的方式来探索其中的奥秘。

当cap为3时,计算过程如下:
cap = 3n = 2n |= n >>> 1       010  | 001 = 011   n = 3n |= n >>> 2       011  | 000 = 011   n = 3n |= n >>> 4       011  | 000 = 011   n = 3….n = n + 1 = 4
当cap为5时,计算过程如下:
cap = 5n = 4n |= n >>> 1    0100 | 0010 = 0110  n = 6n |= n >>> 2    0110 | 0001 = 0111  n = 7….n = n + 1 = 8
因此,计算的意义在于找到大于等于cap的最小2的整数次幂。整个过程是找到cap对应二进制中最高位的1,然后每次以2倍的步长(依次移位1、2、4、8、16)复制最高位1到后面的所有低位,把最高位1后面的所有位全部置为1,最后进行+1,即完成了进位。
类似二进制位的变化过程如下:
0100 10100111 11111000 0000
找到输入cap的最小2的整数次幂作为最终容量可以理解为最小可用原则,尽可能地少占用空间,但是为什么必须要2的整数次幂呢?答案是,为了提高计算与存储效率,使每个元素对应hash值能够准确落入哈希桶数组给定的范围区间内。确定数组下标采用的算法是 hash & (n - 1),n即为哈希桶数组的大小。由于其总是2的整数次幂,这意味着n-1的二进制形式永远都是0000111111的形式,即从最低位开始,连续出现多个1,该二进制与任何值进行&运算都会使该值映射到指定区间[0, n-1]。比如:当n=8时,n-1对应的二进制为0111,任何与0111进行&运算都会落入[0,7]的范围内,即落入给定的8个哈希桶中,存储空间利用率100%。举个反例,当n=7,n-1对应的二进制为0110,任何与0110进行&运算会落入到第0、6、4、2个哈希桶,而不是[0,6]的区间范围内,少了1、3、5三个哈希桶,这导致存储空间利用率只有不到60%,同时也增加了哈希碰撞的几率。
2  ASHIFT偏移量计算
获取给定值的最高有效位数(移位除了能够进行乘除运算,还能用于保留高、低位操作,右移保留高位,左移保留低位)。
ConcurrentHashMap中的ABASE+ASHIFT是用来计算哈希数组中某个元素在实际内存中的初始位置,ASHIFT采取的计算方式是31与scale前导0的数量做差,也就是scale的实际位数-1。scale就是哈希桶数组Node[]中每个元素的大小,通过((long)i << ASHIFT) + ABASE)进行计算,便可得到数组中第i个元素的起始内存地址。

我们继续看下前导0的数量是怎么计算出来的,numberOfLeadingZeros是Integer的静态方法,还是沿用找规律的方式一探究竟。

假设 i = 0000 0000 0000 0100 0000 0000 0000 0000,n = 1
i >>> 16  0000 0000 0000 0000 0000 0000 0000 0100   不为0i >>> 24  0000 0000 0000 0000 0000 0000 0000 0000   等于0
右移了24位等于0,说明24位到31位之间肯定全为0,即n = 1 + 8 = 9,由于高8位全为0,并且已经将信息记录至n中,因此可以舍弃高8位,即 i <<= 8。此时,
i = 0000 0100 0000 0000 0000 0000 0000 0000
类似地,i >>> 28 也等于0,说明28位到31位全为0,n = 9 + 4 = 13,舍弃高4位。此时,
i = 0100 0000 0000 0000 0000 0000 0000 0000
继续运算,
i >>> 30  0000 0000 0000 0000 0000 0000 0000 0001   不为0i >>> 31  0000 0000 0000 0000 0000 0000 0000 0000   等于0
最终可得出n = 13,即有13个前导0。n -= i  >>> 31是检查最高位31位是否是1,因为n初始化为1,如果最高位是1,则不存在前置0,即n = n - 1 = 0。
总结一下,以上的操作其实是基于二分法的思想来定位二进制中1的最高位,先看高16位,若为0,说明1存在于低16位;反之存在高16位。由此将搜索范围由32位(确切的说是31位)减少至16位,进而再一分为二,校验高8位与低8位,以此类推。
计算过程中校验的位数依次为16、8、4、2、1,加起来刚好为31。为什么是31不是32呢?因为前置0的数量为32的情况下i只能为0,在前面的if条件中已经进行过滤。这样一来,非0值的情况下,前置0只能出现在高31位,因此只需要校验高31位即可。最终,用总位数减去计算出来的前导0的数量,即可得出二进制的最高有效位数。代码中使用的是31 - Integer.numberOfLeadingZeros(scale),而不是总位数32,这是为了能够得到哈希桶数组中第i个元素的起始内存地址,方便进行CAS等操作。
五  并发
1  悲观锁
全表锁
HashTable中采用了全表锁,即所有操作均上锁,串行执行,如下图中的put方法所示,采用synchronized关键字修饰。这样虽然保证了线程安全,但是在多核处理器时代也极大地影响了计算性能,这也致使HashTable逐渐淡出开发者们的视野。

分段锁
针对HashTable中锁粒度过粗的问题,在JDK1.8之前,ConcurrentHashMap引入了分段锁机制。整体的存储结构如下图所示,在原有结构的基础上拆分出多个segment,每个segment下再挂载原来的entry(上文中经常提到的哈希桶数组),每次操作只需要锁定元素所在的segment,不需要锁定整个表。因此,锁定的范围更小,并发度也会得到提升。

2  乐观锁
Synchronized+CAS
虽然引入了分段锁的机制,即可以保证线程安全,又可以解决锁粒度过粗导致的性能低下问题,但是对于追求极致性能的工程师来说,这还不是性能的天花板。因此,在JDK1.8中,ConcurrentHashMap摒弃了分段锁,使用了乐观锁的实现方式。放弃分段锁的原因主要有以下几点:
  • 使用segment之后,会增加ConcurrentHashMap的存储空间。

  • 当单个segment过大时,并发性能会急剧下降。

ConcurrentHashMap在JDK1.8中的实现废弃了之前的segment结构,沿用了与HashMap中的类似的Node数组结构。

ConcurrentHashMap中的乐观锁是采用synchronized+CAS进行实现的。这里主要看下put的相关代码。
当put的元素在哈希桶数组中不存在时,则直接CAS进行写操作。

这里涉及到了两个重要的操作,tabAt与casTabAt。可以看出,这里面都使用了Unsafe类的方法。Unsafe这个类在日常的开发过程中比较罕见。我们通常对Java语言的认知是:Java语言是安全的,所有操作都基于JVM,在安全可控的范围内进行。然而,Unsafe这个类会打破这个边界,使Java拥有C的能力,可以操作任意内存地址,是一把双刃剑。这里使用到了前文中所提到的ASHIFT,来计算出指定元素的起始内存地址,再通过getObjectVolatile与compareAndSwapObject分别进行取值与CAS操作。
在获取哈希桶数组中指定位置的元素时为什么不能直接get而是要使用getObjectVolatile呢?因为在JVM的内存模型中,每个线程有自己的工作内存,也就是栈中的局部变量表,它是主存的一份copy。因此,线程1对某个共享资源进行了更新操作,并写入到主存,而线程2的工作内存之中可能还是旧值,脏数据便产生了。Java中的volatile是用来解决上述问题,保证可见性,任意线程对volatile关键字修饰的变量进行更新时,会使其它线程中该变量的副本失效,需要从主存中获取最新值。虽然ConcurrentHashMap中的Node数组是由volatile修饰的,可以保证可见性,但是Node数组中元素是不具备可见性的。因此,在获取数据时通过Unsafe的方法直接到主存中拿,保证获取的数据是最新的。

继续往下看put方法的逻辑,当put的元素在哈希桶数组中存在,并且不处于扩容状态时,则使用synchronized锁定哈希桶数组中第i个位置中的第一个元素f(头节点2),接着进行double check,类似于DCL单例模式的思想。校验通过后,会遍历当前冲突链上的元素,并选择合适的位置进行put操作。此外,ConcurrentHashMap也沿用了HashMap中解决哈希冲突的方案,链表+红黑树。这里只有在发生哈希冲突的情况下才使用synchronized锁定头节点,其实是比分段锁更细粒度的锁实现,只在特定场景下锁定其中一个哈希桶,降低锁的影响范围。

Java Map针对并发场景解决方案的演进方向可以归结为,从悲观锁到乐观锁,从粗粒度锁到细粒度锁,这也可以作为我们在日常并发编程中的指导方针。
3  并发求和
CounterCell是JDK1.8中引入用来并发求和的利器,而在这之前采用的是【尝试无锁求和】+【冲突时加锁重试】的策略。看下CounterCell的注释,它是改编自LongAdder和Striped64。我们先看下求和操作,其实就是取baseCount作为初始值,然后遍历CounterCell数组中的每一个cell,将各个cell的值进行累加。这里额外说明下@sun.misc.Contender注解的作用,它是Java8中引入用来解决缓存行伪共享问题的。什么是伪共享呢?简单说下,考虑到CPU与主存之间速度的巨大差异,在CPU中引入了L1、L2、L3多级缓存,缓存中的存储单位是缓存行,缓存行大小为2的整数次幂字节,32-256个字节不等,最常见的是64字节。因此,这将导致不足64字节的变量会共享同一个缓存行,其中一个变量失效会影响到同一个缓存行中的其他变量,致使性能下降,这就是伪共享问题。考虑到不同CPU的缓存行单位的差异性,Java8中便通过该注解将这种差异性屏蔽,根据实际缓存行大小来进行填充,使被修饰的变量能够独占一个缓存行。
再来看下CounterCell是如何实现计数的,每当map中的容量有变化时会调用addCount进行计数,核心逻辑如下:
  • 当counterCells不为空,或counterCells为空且对baseCount进行CAS操作失败时进入到后续计数处理逻辑,否则对baseCount进行CAS操作成功,直接返回。

  • 后续计数处理逻辑中会调用核心计数方法fullAddCount,但需要满足以下4个条件中的任意一个:1、counterCells为空;2、counterCells的size为0;3、counterCells对应位置上的counterCell为空;4、CAS更新counterCells对应位置上的counterCell失败。这些条件背后的语义是,当前情况下,计数已经或曾经出现过并发冲突,需要优先借助于CounterCell来解决。若counterCells与对应位置上的元素已经初始化(条件4),则先尝试CAS进行更新,若失败则调用fullAddCount继续处理。若counterCells与对应位置上的元素未初始化完成(条件1、2、3),也要调用AddCount进行后续处理。

  • 这里确定cell下标时采用了ThreadLocalRandom.getProbe()作为哈希值,这个方法返回的是当前Thread中threadLocalRandomProbe字段的值。而且当哈希值冲突时,还可以通过advanceProbe方法来更换哈希值。这与HashMap中的哈希值计算逻辑不同,因为HashMap中要保证同一个key进行多次哈希计算的哈希值相同并且能定位到对应的value,即便两个key的哈希值冲突也不能随便更换哈希值,只能采用链表或红黑树处理冲突。然而在计数场景,我们并不需要维护key-value的关系,只需要在counterCells中找到一个合适的位置放入计数cell,位置的差异对最终的求和结果是没有影响的,因此当冲突时可以基于随机策略更换一个哈希值来避免冲突。

接着,我们来看下核心计算逻辑fullAddCount,代码还是比较多的,核心流程是通过一个死循环来实现的,循环体中包含了3个处理分支,为了方便讲解我将它们依次定义A、B、C。
  • A:表示counterCells已经初始化完成,因此可以尝试更新或创建对应位置的CounterCell。

  • B表示counterCells未初始化完成,且无冲突(拿到cellsBusy锁),则加锁初始化counterCells,初始容量为2。

  • C表示counterCells未初始化完成,且有冲突(未能拿到cellsBusy锁),则CAS更新baseCount,baseCount在求和时也会被算入到最终结果中,这也相当于是一种兜底策略,既然counterCells正在被其他线程锁定,那当前线程也没必要再等待了,直接尝试使用baseCount进行累加。

其中,A分支中涉及到的操作又可以拆分为以下几点:
  • a1:对应位置的CounterCell未创建,采用锁+Double Check的策略尝试创建CounterCell,失败的话则continue进行重试。这里面采用的锁是cellsBusy,它保证创建CounterCell并放入counterCells时一定是串行执行,避免重复创建,其实就是使用了DCL单例模式的策略。在CounterCells的创建、扩容中都需要使用该锁。

  • a2:冲突检测,变量wasUncontended是调用方addCount中传入的,表示前置的CAS更新cell失败,有冲突,需要更换哈希值【a7】后继续重试。

  • a3:对应位置的CounterCell不为空,直接CAS进行更新。

  • a4:

  • 冲突检测,当counterCells的引用值不等于当前线程对应的引用值时,说明有其他线程更改了counterCells的引用,出现冲突,则将collide设为false,下次迭代时可进行扩容。

  • 容量限制,counterCells容量的最大值为大于等于NCPU(实际机器CPU核心的数量)的最小2的整数次幂,当达到容量限制时后面的扩容分支便永远不会执行。这里限制的意义在于,真实并发度是由CPU核心来决定,当counterCells容量与CPU核心数量相等时,理想情况下就算所有CPU核心在同时运行不同的计数线程时,都不应该出现冲突,每个线程选择各自的cell进行处理即可。如果出现冲突,一定是哈希值的问题,因此采取的措施是重新计算哈希值a7,而不是通过扩容来解决。时间换空间,避免不必要的存储空间浪费,非常赞的想法~

  • a5:更新扩容标志位,下次迭代时将会进行扩容。

  • a6:进行加锁扩容,每次扩容1倍。

  • a7:更换哈希值。

private final void fullAddCount(long x, boolean wasUncontended) {        int h;        // 初始化probe        if ((h = ThreadLocalRandom.getProbe()) == 0) {            ThreadLocalRandom.localInit();      // force initialization            h = ThreadLocalRandom.getProbe();            wasUncontended = true;        }        // 用来控制扩容操作        boolean collide = false;                // True if last slot nonempty        for (;;) {            CounterCell[] as; CounterCell a; int n; long v;            // 【A】counterCells已经初始化完毕            if ((as = counterCells) != null && (n = as.length) > 0) {                // 【a1】对应位置的CounterCell未创建                if ((a = as[(n - 1) & h]) == null) {                    // cellsBusy其实是一个锁,cellsBusy=0时表示无冲突                    if (cellsBusy == 0) {            // Try to attach new Cell                        // 创建新的CounterCell                        CounterCell r = new CounterCell(x); // Optimistic create                        // Double Check,加锁(通过CAS将cellsBusy设置1)                        if (cellsBusy == 0 &&                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {                            boolean created = false;                            try {               // Recheck under lock                                CounterCell[] rs; int m, j;                                // Double Check                                if ((rs = counterCells) != null &&                                    (m = rs.length) > 0 &&                                    rs[j = (m - 1) & h] == null) {                                    // 将新创建的CounterCell放入counterCells中                                    rs[j] = r;                                    created = true;                                }                            } finally {                                // 解锁,这里为什么不用CAS?因为当前流程中需要在获取锁的前提下进行,即串行执行,因此不存在并发更新问题,只需要正常更新即可                                cellsBusy = 0;                            }                            if (created)                                break;                            // 创建失败则重试                            continue;           // Slot is now non-empty                        }                    }                    // cellsBusy不为0,说明被其他线程争抢到了锁,还不能考虑扩容                    collide = false;                }                //【a2】冲突检测                else if (!wasUncontended)       // CAS already known to fail                    // 调用方addCount中CAS更新cell失败,有冲突,则继续尝试CAS                    wasUncontended = true;      // Continue after rehash                //【a3】对应位置的CounterCell不为空,直接CAS进行更新                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))                    break;                //【a4】容量限制                else if (counterCells != as || n >= NCPU)                    // 说明counterCells容量的最大值为大于NCPU(实际机器CPU核心的数量)最小2的整数次幂。                    // 这里限制的意义在于,并发度是由CPU核心来决定,当counterCells容量与CPU核心数量相等时,理论上讲就算所有CPU核心都在同时运行不同的计数线程时,都不应该出现冲突,每个线程选择各自的cell进行处理即可。如果出现冲突,一定是哈希值的问题,因此采取的措施是重新计算哈希值(h = ThreadLocalRandom.advanceProbe(h)),而不是通过扩容来解决                    // 当n大于NCPU时后面的分支就不会走到了                    collide = false;            // At max size or stale                // 【a5】更新扩容标志位                else if (!collide)                    // 说明映射到cell位置不为空,并且尝试进行CAS更新时失败了,则说明有竞争,将collide设置为true,下次迭代时执行后面的扩容操作,降低竞争度                    // 有竞争时,执行rehash+扩容,当容量大于CPU核心时则停止扩容只进行rehash                    collide = true;                // 【a6】加锁扩容                else if (cellsBusy == 0 &&                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {                    // 加锁扩容                    try {                        if (counterCells == as) {// Expand table unless stale                            // 扩容1倍                            CounterCell[] rs = new CounterCell[n << 1];                            for (int i = 0; i < n; ++i)                                rs[i] = as[i];                            counterCells = rs;                        }                    } finally {                        cellsBusy = 0;                    }                    collide = false;                    continue;                   // Retry with expanded table                }                //【a7】更换哈希值                h = ThreadLocalRandom.advanceProbe(h);            }            // 【B】counterCells未初始化完成,且无冲突,则加锁初始化counterCells            else if (cellsBusy == 0 && counterCells == as &&                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {                boolean init = false;                try {                           // Initialize table                    if (counterCells == as) {                        CounterCell[] rs = new CounterCell[2];                        rs[h & 1] = new CounterCell(x);                        counterCells = rs;                        init = true;                    }                } finally {                    cellsBusy = 0;                }                if (init)                    break;            }            // 【C】counterCells未初始化完成,且有冲突,则CAS更新baseCount            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))                break;                          // Fall back on using base        }
CounterCell的设计很巧妙,它的背后其实就是JDK1.8中的LongAdder。核心思想是:在并发较低的场景下直接采用baseCount累加,否则结合counterCells,将不同的线程散列到不同的cell中进行计算,尽可能地确保访问资源的隔离,减少冲突。LongAdder相比较于AtomicLong中无脑CAS的策略,在高并发的场景下,能够减少CAS重试的次数,提高计算效率。
六  结语
以上可能只是Java Map源码中的冰山一角,但是基本包括了大部分的核心特性,涵盖了我们日常开发中的大部分场景。读源码跟读书一样,仿佛跨越了历史长河与作者进行近距离对话,揣摩他的心思,学习他的思想并加以传承。信息加工转化为知识并运用的过程是痛苦的,但是痛并快乐着。


电子书
免费下载

《开源大数据前瞻与应用实战》

Flink社区重磅推出2021理论与实战精解系列电子书!第1期《开源大数据前瞻与理论实战》收录了多位大数据领域行业开拓者对未来前沿趋势的洞察,揭秘Apache Flink及开源生态的前沿独家应用!

点击“阅原文”,立即下载吧~

最新文章

随机文章

基本 文件 流程 错误 SQL 调试
  1. 请求信息 : 2026-02-10 01:42:00 HTTP/2.0 GET : https://f.mffb.com.cn/a/459152.html
  2. 运行时间 : 0.093441s [ 吞吐率:10.70req/s ] 内存消耗:4,836.49kb 文件加载:140
  3. 缓存信息 : 0 reads,0 writes
  4. 会话信息 : SESSION_ID=dc067273afd3422e7753477af5868f4e
  1. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/public/index.php ( 0.79 KB )
  2. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/autoload.php ( 0.17 KB )
  3. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/autoload_real.php ( 2.49 KB )
  4. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/platform_check.php ( 0.90 KB )
  5. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/ClassLoader.php ( 14.03 KB )
  6. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/autoload_static.php ( 4.90 KB )
  7. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper.php ( 8.34 KB )
  8. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-validate/src/helper.php ( 2.19 KB )
  9. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/helper.php ( 1.47 KB )
  10. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/stubs/load_stubs.php ( 0.16 KB )
  11. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Exception.php ( 1.69 KB )
  12. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-container/src/Facade.php ( 2.71 KB )
  13. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/deprecation-contracts/function.php ( 0.99 KB )
  14. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/polyfill-mbstring/bootstrap.php ( 8.26 KB )
  15. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/polyfill-mbstring/bootstrap80.php ( 9.78 KB )
  16. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/var-dumper/Resources/functions/dump.php ( 1.49 KB )
  17. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-dumper/src/helper.php ( 0.18 KB )
  18. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/var-dumper/VarDumper.php ( 4.30 KB )
  19. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/App.php ( 15.30 KB )
  20. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-container/src/Container.php ( 15.76 KB )
  21. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/container/src/ContainerInterface.php ( 1.02 KB )
  22. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/provider.php ( 0.19 KB )
  23. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Http.php ( 6.04 KB )
  24. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper/Str.php ( 7.29 KB )
  25. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Env.php ( 4.68 KB )
  26. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/common.php ( 0.03 KB )
  27. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/helper.php ( 18.78 KB )
  28. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Config.php ( 5.54 KB )
  29. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/app.php ( 0.95 KB )
  30. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/cache.php ( 0.78 KB )
  31. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/console.php ( 0.23 KB )
  32. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/cookie.php ( 0.56 KB )
  33. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/database.php ( 2.48 KB )
  34. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/Env.php ( 1.67 KB )
  35. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/filesystem.php ( 0.61 KB )
  36. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/lang.php ( 0.91 KB )
  37. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/log.php ( 1.35 KB )
  38. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/middleware.php ( 0.19 KB )
  39. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/route.php ( 1.89 KB )
  40. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/session.php ( 0.57 KB )
  41. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/trace.php ( 0.34 KB )
  42. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/view.php ( 0.82 KB )
  43. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/event.php ( 0.25 KB )
  44. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Event.php ( 7.67 KB )
  45. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/service.php ( 0.13 KB )
  46. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/AppService.php ( 0.26 KB )
  47. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Service.php ( 1.64 KB )
  48. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Lang.php ( 7.35 KB )
  49. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/lang/zh-cn.php ( 13.70 KB )
  50. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/Error.php ( 3.31 KB )
  51. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/RegisterService.php ( 1.33 KB )
  52. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/services.php ( 0.14 KB )
  53. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/PaginatorService.php ( 1.52 KB )
  54. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/ValidateService.php ( 0.99 KB )
  55. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/ModelService.php ( 2.04 KB )
  56. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/Service.php ( 0.77 KB )
  57. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Middleware.php ( 6.72 KB )
  58. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/BootService.php ( 0.77 KB )
  59. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/Paginator.php ( 11.86 KB )
  60. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-validate/src/Validate.php ( 63.20 KB )
  61. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/Model.php ( 23.55 KB )
  62. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/Attribute.php ( 21.05 KB )
  63. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/AutoWriteData.php ( 4.21 KB )
  64. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/Conversion.php ( 6.44 KB )
  65. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/DbConnect.php ( 5.16 KB )
  66. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/ModelEvent.php ( 2.33 KB )
  67. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/RelationShip.php ( 28.29 KB )
  68. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/contract/Arrayable.php ( 0.09 KB )
  69. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/contract/Jsonable.php ( 0.13 KB )
  70. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/contract/Modelable.php ( 0.09 KB )
  71. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Db.php ( 2.88 KB )
  72. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/DbManager.php ( 8.52 KB )
  73. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Log.php ( 6.28 KB )
  74. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Manager.php ( 3.92 KB )
  75. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/log/src/LoggerTrait.php ( 2.69 KB )
  76. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/log/src/LoggerInterface.php ( 2.71 KB )
  77. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Cache.php ( 4.92 KB )
  78. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/simple-cache/src/CacheInterface.php ( 4.71 KB )
  79. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper/Arr.php ( 16.63 KB )
  80. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/cache/driver/File.php ( 7.84 KB )
  81. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/cache/Driver.php ( 9.03 KB )
  82. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/CacheHandlerInterface.php ( 1.99 KB )
  83. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/Request.php ( 0.09 KB )
  84. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Request.php ( 55.78 KB )
  85. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/middleware.php ( 0.25 KB )
  86. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Pipeline.php ( 2.61 KB )
  87. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/TraceDebug.php ( 3.40 KB )
  88. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/middleware/SessionInit.php ( 1.94 KB )
  89. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Session.php ( 1.80 KB )
  90. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/session/driver/File.php ( 6.27 KB )
  91. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/SessionHandlerInterface.php ( 0.87 KB )
  92. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/session/Store.php ( 7.12 KB )
  93. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Route.php ( 23.73 KB )
  94. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleName.php ( 5.75 KB )
  95. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Domain.php ( 2.53 KB )
  96. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleGroup.php ( 22.43 KB )
  97. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Rule.php ( 26.95 KB )
  98. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleItem.php ( 9.78 KB )
  99. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/route/app.php ( 1.72 KB )
  100. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/Route.php ( 4.70 KB )
  101. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/dispatch/Controller.php ( 4.74 KB )
  102. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Dispatch.php ( 10.44 KB )
  103. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/controller/Index.php ( 4.81 KB )
  104. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/BaseController.php ( 2.05 KB )
  105. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/facade/Db.php ( 0.93 KB )
  106. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/connector/Mysql.php ( 5.44 KB )
  107. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/PDOConnection.php ( 52.47 KB )
  108. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Connection.php ( 8.39 KB )
  109. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/ConnectionInterface.php ( 4.57 KB )
  110. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/builder/Mysql.php ( 16.58 KB )
  111. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Builder.php ( 24.06 KB )
  112. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/BaseBuilder.php ( 27.50 KB )
  113. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Query.php ( 15.71 KB )
  114. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/BaseQuery.php ( 45.13 KB )
  115. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/TimeFieldQuery.php ( 7.43 KB )
  116. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/AggregateQuery.php ( 3.26 KB )
  117. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ModelRelationQuery.php ( 20.07 KB )
  118. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ParamsBind.php ( 3.66 KB )
  119. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ResultOperation.php ( 7.01 KB )
  120. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/WhereQuery.php ( 19.37 KB )
  121. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/JoinAndViewQuery.php ( 7.11 KB )
  122. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/TableFieldInfo.php ( 2.63 KB )
  123. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/Transaction.php ( 2.77 KB )
  124. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/log/driver/File.php ( 5.96 KB )
  125. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/LogHandlerInterface.php ( 0.86 KB )
  126. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/log/Channel.php ( 3.89 KB )
  127. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/event/LogRecord.php ( 1.02 KB )
  128. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/Collection.php ( 16.47 KB )
  129. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/View.php ( 1.70 KB )
  130. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/View.php ( 4.39 KB )
  131. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Response.php ( 8.81 KB )
  132. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/response/View.php ( 3.29 KB )
  133. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Cookie.php ( 6.06 KB )
  134. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-view/src/Think.php ( 8.38 KB )
  135. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/TemplateHandlerInterface.php ( 1.60 KB )
  136. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/Template.php ( 46.61 KB )
  137. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/template/driver/File.php ( 2.41 KB )
  138. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/template/contract/DriverInterface.php ( 0.86 KB )
  139. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/runtime/temp/067d451b9a0c665040f3f1bdd3293d68.php ( 11.98 KB )
  140. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/Html.php ( 4.42 KB )
  1. CONNECT:[ UseTime:0.000571s ] mysql:host=127.0.0.1;port=3306;dbname=f_mffb;charset=utf8mb4
  2. SHOW FULL COLUMNS FROM `fenlei` [ RunTime:0.000883s ]
  3. SELECT * FROM `fenlei` WHERE `fid` = 0 [ RunTime:0.002676s ]
  4. SELECT * FROM `fenlei` WHERE `fid` = 63 [ RunTime:0.000263s ]
  5. SHOW FULL COLUMNS FROM `set` [ RunTime:0.000481s ]
  6. SELECT * FROM `set` [ RunTime:0.000195s ]
  7. SHOW FULL COLUMNS FROM `article` [ RunTime:0.000509s ]
  8. SELECT * FROM `article` WHERE `id` = 459152 LIMIT 1 [ RunTime:0.000762s ]
  9. UPDATE `article` SET `lasttime` = 1770658920 WHERE `id` = 459152 [ RunTime:0.007877s ]
  10. SELECT * FROM `fenlei` WHERE `id` = 65 LIMIT 1 [ RunTime:0.000243s ]
  11. SELECT * FROM `article` WHERE `id` < 459152 ORDER BY `id` DESC LIMIT 1 [ RunTime:0.000461s ]
  12. SELECT * FROM `article` WHERE `id` > 459152 ORDER BY `id` ASC LIMIT 1 [ RunTime:0.001291s ]
  13. SELECT * FROM `article` WHERE `id` < 459152 ORDER BY `id` DESC LIMIT 10 [ RunTime:0.001406s ]
  14. SELECT * FROM `article` WHERE `id` < 459152 ORDER BY `id` DESC LIMIT 10,10 [ RunTime:0.005221s ]
  15. SELECT * FROM `article` WHERE `id` < 459152 ORDER BY `id` DESC LIMIT 20,10 [ RunTime:0.005461s ]
0.095057s