当前位置:首页>python>Python | K折交叉验证的参数优化的核回归(KR)预测及可视化算法

Python | K折交叉验证的参数优化的核回归(KR)预测及可视化算法

  • 2026-01-15 05:14:13
Python | K折交叉验证的参数优化的核回归(KR)预测及可视化算法

点击下方“Lwcah”关注公众号

立个flag,这是未来一段时间打算做的Python教程,敬请关注。

1 数据及应用领域

我的程序中给出数据data.xlsx(代码及数据见文末),10 列特征值,1 个目标值,适用于各行各业回归预测算法的需求,其中出图及数据自动保存在当前目录,设置的训练集与预测集的比例为 80%:20%。

一、地球科学与环境科学

  • 遥感反演:利用多源遥感数据预测水体深度、土壤湿度、植被指数、叶面积指数等。
  • 气象与气候研究:预测降水量、气温、风速、风向等连续气象变量。
  • 水文与水资源管理:河流流量、地下水位、径流量预测。
  • 环境污染监测:空气质量指数、PM2.5/PM10浓度、重金属污染水平预测。
  • 地质与矿业:预测矿区地表沉降、地裂缝发展趋势,或矿产储量评估。

二、生物学与医学

  • 生态学:预测物种分布密度、群落生物量或生态环境因子变化。
  • 公共卫生:基于环境、生活方式或基因组数据预测疾病风险或血液生化指标。
  • 医学影像分析:预测器官或病灶体积、组织属性、功能指标。

三、工程与物理科学

  • 材料科学:预测材料性能,如强度、硬度、导热性、弹性模量
  • 土木与结构工程:预测建筑物或桥梁的应力、位移、寿命周期。
  • 控制系统与信号处理:连续控制变量预测、信号功率或系统状态预测。

四、经济与社会科学

  • 经济预测:股价、GDP、通货膨胀率、消费指数预测。
  • 市场分析:销售额、客户需求、产品价格预测。
  • 社会行为:人口增长、流动性、社会指标预测。

五、数据科学与机器学习方向

  • 时间序列预测:股票价格、气象指标、传感器数据。
  • 多变量因果建模:分析各特征对连续目标变量的影响。
  • 特征重要性解释:结合SHAP、LIME等方法揭示变量贡献。

2 算法理论基础

在传统回归模型中,我们往往需要提前假设数据的函数形式,如线性、多项式或树状结构。而 KR 回归(Kernel Regression,核回归)提供了一种完全不同的思路:
不去假设模型长什么样,而是直接根据邻近样本的分布来计算预测值。

它是一种非常灵活的非参数方法,尤其适合数据关系平滑、但难以用显式函数表达的任务。

🌟 一、KR 回归是什么?

Kernel Regression 的核心思想是:

预测一个点的值时,让附近的样本以“加权平均”的方式贡献信息,距离越近,权重越大;距离越远,影响越弱。

它不像线性模型需要拟合参数,也不像树模型需要分裂特征,而是完全基于样本空间的局部结构进行预测。

🌟 二、核函数决定“邻居的重要性”

KR 回归的关键在于核函数(Kernel)。
核函数告诉模型:

  • 哪些样本算“近邻”
  • 距离越远,权重下降速度如何
  • 局部区域的平滑程度

常见核函数包括:

  • 高斯核
  • Epanechnikov 核
  • 均匀核

不同核函数决定了模型拟合的形状和敏感度。

🌟 三、带宽(Bandwidth)决定模型的“平滑程度”

在 KR 回归中,带宽 h 是最关键的超参数。
通俗理解:

  • 带宽小 → 拟合更敏感、局部性更强、容易抖动
  • 带宽大 → 拟合更平滑、泛化能力更强,但可能欠拟合

带宽决定了核函数的“作用范围”,也是 KR 回归最需要仔细选择的部分。

🌟 四、KR 回归的优势:灵活、直观、无假设

KR 回归具有典型的非参数方法特点:

  • 不需假设数据分布
  • 能捕捉复杂非线性关系
  • 对局部特征高度敏感
  • 预测方式直观,即:看周围邻居的加权值
  • 在数据密集区域表现尤其好

当你不知道数据的具体函数形式时,KR 是一种非常自然的选择。

🌟 五、KR 回归适用场景

KR 回归适用于:

  • 非线性强但关系平滑的任务
  • 数据量中等且分布较均匀的场景
  • 不希望提前设定模型结构的分析
  • 需要局部加权拟合的需求
  • 作为 baseline 验证模型趋势

在数据科学探索阶段,KR 常被用于观察局部模式或作为对比模型。

3 其他图示

🎲 一、特征值相关性热图

特征值相关性热图用于展示各特征之间的相关强弱,通过颜色深浅体现正负相关关系,帮助快速识别冗余特征、强相关特征及可能影响模型稳定性的变量,为后续特征选择和建模提供参考。

🎲 二、散点密度图

散点密度图通过颜色或亮度反映点的聚集程度,用于展示大量样本的分布特征。相比普通散点图,它能更直观地呈现高密度区域、异常点及整体趋势,常用于回归分析与模型评估。以下为训练集和测试集出图效果。

🎲 三、贝叶斯搜索参数优化算法及示意图

🌟 1. 先构建一个“参数-效果”的概率模型

贝叶斯优化会根据每一次调参的表现,持续更新一份“这个参数组合大概率能获得更好效果”的认知。
这份认知由一个代理模型承担,通常是高斯过程或树结构模型。它不像网格搜索那样盲目,而是先学、再试

🌟 2. 通过“探索”与“利用”平衡选点

贝叶斯优化每次选新的参数时都会权衡:

  • 探索:去试试没探索过的区域,可能藏着宝贝
  • 利用:去当前最可能效果最好的区域,稳扎稳打 这种带策略的试验方式,让调参过程既高效又不容易错过最优解。

🌟 3. 不断用真实结果修正判断

每试一个参数组合,代理模型就会重新更新“信念”,并重新预测哪些区域值得继续尝试。
调参越往后,模型越“聪明”,搜索路径越精确。这就像一个不断学习经验的调参工程师,越调越准。

🌟 4. 收敛快,适用于高成本模型

因为每一次试验都很有价值,贝叶斯优化通常只需几十次实验就能找到非常优秀的超参数组合。
这对训练成本高的模型(XGBoost、LightGBM、CatBoost、深度学习)尤其友好。

🌟 5. 程序能画非常直观的可视化

该图展示贝叶斯优化过程中各超参数的重要性,对模型误差影响最大的为 n_estimators 和 learning_rate,其次为 max_depth,而 subsample 与 reg_lambda 贡献较小,用于判断调参优先级。

🎲 四、随机搜索参数优化算法及示意图

🌟 1、随机搜索是什么?

一句话概括:

随机搜索就是在超参数空间里不断“抽样试验”,从而找到表现最好的参数组合。

不同于按顺序走格子的调参方式,随机搜索会在整个参数空间中“自由跳跃”,每次从可能区域里随机挑选出一个参数组合,用最直接的方式评估模型的表现。

🌟 2、它的核心思路其实很聪明

虽然名字叫“随机”,但它背后的逻辑却非常高效。

✔ 1. 更广的覆盖范围

每次抽取的点都可能落在搜索空间的不同区域,让模型在有限的预算里探索更多潜在好参数。

✔ 2. 支持多种采样策略

你可以让 learning_rate 以对数分布抽取、让 n_estimators 偏向更大值,这让随机搜索能更贴近真实优化需求。

✔ 3. 每一次试验都独立有效

不依赖复杂的历史记录,适用于快速尝试、快速验证的场景。

换句话说:  它简单,但“简单得很有效”。

🌟 3、为什么它在实际调参中被广泛使用?

在许多模型中,超参数空间往往非常大,比如:

  • XGBoost 的树深、学习率、子采样比例
  • 神经网络的学习率、层数、节点数
  • CatBoost、LightGBM 的几十种可调参数

随机搜索能在这些复杂空间里迅速落点——  不需要把所有组合都跑一遍,也不需要构建额外的代理模型,只需要不断抽样并测试结果。尤其在遥感反演、深度学习任务中,这种轻量但高覆盖的方式,往往能快速找到一个令人满意的初步最优解。

🌟 4、它适合什么场景?

简单总结几个典型应用:

  • 模型初调:快速找到可行参数范围
  • 大搜索空间:超参数众多、组合巨大时
  • 训练成本高:希望用少量试验找到较好解
  • 模型表现敏感:需要探索更大范围避免局部最优

这也是为什么随机搜索常被当作调参的起步策略,先探索,再进一步细化。

🌟 5. 程序能画非常直观的可视化

该图为超参数的成对散点矩阵图,展示不同超参数之间的分布特征与潜在关系,对角线上为各参数的概率密度分布,可用于分析参数空间结构与抽样多样性。

该图展示超参数与模型误差的相关性重要性排名,不同柱状高度反映各参数对 RMSE 的影响强弱,其中 reg_alpha、max_depth 和 learning_rate 贡献最高,有助于确定调参重点方向。

🎲 五、网格搜索参数优化算法及示意图

🌟 1、网格搜索是什么?

一句话概括:

网格搜索就是把所有设定好的超参数组合排成一个“网格”,逐个尝试,通过评估结果找到表现最佳的那一组参数。

就像在一个二维或多维坐标空间里,把所有候选参数都排列出来,然后把每个点都跑一遍,最终选出模型表现最优的位置。

🌟 2、它的核心原则:全面、稳定、逐点验证

网格搜索的理念非常直观:

  • 先定义每个参数可能的取值范围
  • 再把这些取值组合成一个完整网格
  • 然后对每个组合进行模型训练与验证
  • 最后选择最优结果对应的参数

这是一种系统化、无遗漏的搜索方式。它不会遗漏,也不会偏向,它用最直接的方式告诉你:  哪个参数组合最适合你的模型。

🌟 3、为什么网格搜索常被用作调参基础流程?

网格搜索的价值主要体现在几个方面:

✔ 1. 结构清晰、可控性强

你可以完全决定参数候选集,调参过程完全透明。

✔ 2. 适用于小范围、精细化的参数探索

特别适合探索学习率、树深、正则项等关键参数的小步长变化。

✔ 3. 方便结合交叉验证

与 Cross-Validation 结合后,能够获得稳定、可靠的参数评估结果。

✔ 4. 结果可复现、可追踪

每个组合都被尝试过,调参过程完整记录,适合科研工作。

🌟 4、典型应用场景

网格搜索广泛应用于:

  • XGBoost / LightGBM / CatBoost 的关键参数精调
  • SVM、随机森林、岭回归等模型的标准调参
  • 小规模搜索空间的系统验证
  • 科研论文中要求严谨、可复现的实验设计

在你的任务里,网格搜索非常适合用于关键参数的局部精调,确保模型在最佳点附近充分探索。

🌟 5. 程序能画非常直观的可视化

该图展示 GridSearchCV 调参过程中各超参数与 RMSE 的相关性重要性,其中 learning_rate、reg_alpha 和 n_estimators 影响最明显,可用于识别关键参数并指导后续调参方向。

5 代码包含具体内容一览

并将训练集和测试集的精度评估指标保存到 metrics. Mat 矩阵中。共两行,第一行代表训练集的,第二行代表测试集的;共 7 个精度评估指标,分别代表 R, R2, ME, MAE, MAPE, RMSE 以及样本数量。

保存的regression_result.mat数据中分别保存了名字为Y_train、y_pred_train、y_test、y_pred_test的矩阵向量。

同样的针对大家各自的数据训练出的模型结构也保存在model.json中,方便再一次调用。

调用的程序我在程序中注释了,如下

# 加载模型
# model.load_model("model.json") 

主程序如下,其中从1-10,每一步都有详细的注释,要获取完整程序,请转下文代码获取


# =========================================================
# 主程序
# =========================================================
def main():
print("=== 1. 读取数据 ===")
    data = pd.read_excel("data.xlsx")
    X = data.iloc[:, :10].values
    y = data.iloc[:, 10].values
    feature_names = list(data.columns[:10])

print("=== 2. 划分训练与测试 ===")
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42
    )

print("=== 3. 归一化 ===")
    scaler_X = MinMaxScaler()
    scaler_y = MinMaxScaler()

    X_train_norm = scaler_X.fit_transform(X_train)
    X_test_norm = scaler_X.transform(X_test)
    y_train_norm = scaler_y.fit_transform(y_train.reshape(-1, 1)).ravel()

print("=== 4. 模型训练 ===")
    model = train_model(X_train_norm, y_train_norm)

print("=== 5. 预测(反归一化到原始尺度) ===")
    y_pred_train_norm = model.predict(X_train_norm)
    y_pred_test_norm = model.predict(X_test_norm)

    y_pred_train = scaler_y.inverse_transform(
        y_pred_train_norm.reshape(-1, 1)
    ).ravel()
    y_pred_test = scaler_y.inverse_transform(
        y_pred_test_norm.reshape(-1, 1)
    ).ravel()

print("=== 6. 模型评估 ===")
    metrics_train = evaluate_model(y_train, y_pred_train)
    metrics_test = evaluate_model(y_test, y_pred_test)

print("\n训练集评估指标:")
for k, v in metrics_train.items():
print(f"  {k}: {v:.4f}"if isinstance(v, floatelse f"  {k}: {v}")

print("\n测试集评估指标:")
for k, v in metrics_test.items():
print(f"  {k}: {v:.4f}"if isinstance(v, floatelse f"  {k}: {v}")

print("=== 7. 保存结果到 MAT 文件 ===")
    result_dict = {
"y_train": y_train.astype(float),
"y_pred_train": y_pred_train.astype(float),
"y_test": y_test.astype(float),
"y_pred_test": y_pred_test.astype(float),
    }
    savemat("regression_result.mat", result_dict)
print("已保存 regression_result.mat")

# 按指标顺序排列
    metrics_matrix = np.array([
        [metrics_train['R'],     metrics_test['R']],
        [metrics_train['R2'],    metrics_test['R2']],
        [metrics_train['ME'],    metrics_test['ME']],
        [metrics_train['MAE'],   metrics_test['MAE']],
        [metrics_train['MAPE'],  metrics_test['MAPE']],
        [metrics_train['RMSE'],  metrics_test['RMSE']],
        [metrics_train['样本数'], metrics_test['样本数']]
    ], dtype=float)
    savemat("metrics.mat", {"metrics": metrics_matrix})
print("已保存 metrics.mat(矩阵大小 7×2)")

print("=== 8. SHAP 分析 ===")
    X_combined = np.vstack([X_train_norm, X_test_norm])
    X_df = pd.DataFrame(X_combined, columns=feature_names)
# shap_results = shap_analysis(model, X_combined, feature_names)
    plot_shap_dependence(model, X_combined, feature_names, X_df)

print("=== 9. 密度散点图 ===")
    plot_density_scatter(
        y_test, y_pred_test, save_path="scatter_density_test.png"
    )
    plot_density_scatter(
        y_train, y_pred_train, save_path="scatter_density_train.png"
    )

print("=== 10. 相关性热图 ===")
    correlation_heatmap(data, feature_names)

print("=== 完成!===")

if __name__ == "__main__":
    main()

6 代码获取

Python | K折交叉验证的参数优化的核回归(KR)预测及可视化算法(包括基础算法、贝叶斯搜索参数优化、随机搜索参数优化及网格搜索参数优化共4组算法)

https://mbd.pub/o/bread/YZWalJhyaA==

新手小白/python 初学者请先根据如下链接教程配置环境,只需要根据我的教程即可,不需要安装 Python 及 pycharm 等软件。如有其他问题可加微信沟通。

Anaconda 安装教程(保姆级超详解)【附安装包+环境玩转指南】

Anaconda安装教程(保姆级超详解)【附安装包+环境玩转指南】

荐读

Python | K折交叉验证的参数优化的Ridge回归(岭回归)预测及可视化算法

Python | K折交叉验证的参数优化的Lasso回归预测及可视化算法

Anaconda如何创建虚拟环境?

Python | K折交叉验证的参数优化的随机森林RF及SHAP可解释性分析回归预测算法

Python | K折交叉验证的参数优化的AdaBoost及SHAP可解释性分析回归预测算法

Python | K折交叉验证的参数优化的GradientBoost及SHAP可解释性分析回归预测算法

Python | K折交叉验证的参数优化的NGBoost及SHAP可解释性分析回归预测算法

Python | K折交叉验证的参数优化的CatBoost及SHAP可解释性分析回归预测算法

炸裂!谷歌发布Gemini 3 Pro,好用程度可以吹爆他!

Python | 网格搜索参数优化的LGBM+SHAP可解释性分析回归预测及可视化算法

Python | 随机搜索参数优化的LGBM+SHAP可解释性分析回归预测及可视化算法

Python | 贝叶斯搜索参数优化的LGBM+SHAP可解释性分析回归预测及可视化算法

Python | LGBM+SHAP可解释性分析回归预测及可视化算法

Python | 网格搜索参数优化的XGBoost+SHAP可解释性分析回归预测及可视化算法

Python | 随机搜索参数优化的XGBoost+SHAP可解释性分析回归预测及可视化算法

Python  |  贝叶斯搜索参数优化的XGBoost+SHAP可解释性分析回归预测及可视化算法

Python | XGBoost+SHAP可解释性分析回归预测及可视化算法

300 种 MATLAB 算法及绘图合集

MATLAB科研绘图产品汇总及回顾~

Anaconda安装教程(保姆级超详解)【附安装包+环境玩转指南】

给研究生的PPT分享 | 如何写好自己的第一篇文章:模块化写作思路+目的性承接措辞

助力论文中英翻译,我是这样训练ChatGPT的(附中文提示词)

我认为学会写专利也应该成为读研期间必备的通识课(附专利写作模版)

我是如何迅速检索并管理一个研究方向的文献的

【科研可视化】这张“雷达图”,让模型性能一眼看透!

祝天下所有研友,都能同韩立一样,步履不停,初心不改,从平凡,走向不凡

盘点那些在山东省青岛市做博后可以申请的项目及关键时间节点

机器学习绘图神器!导师赞不绝口的高质量可视化PPT绘图模版!

盘点那些备受审稿专家青睐的PPT技术流程图

《Lwcah》敬告

全职师资博士后,专注GNSS与遥感科学,致力于MATLAB与Python跨平台算法实现,涵盖机器/深度学习、信号分解、神经网络、测量平差。分享前沿会议资讯、基金申报、文献解析、学术与职业机会,打造资源共享科研交流平台,助力科研高效开展。

——《Lwcah》运营团队

投稿、转载、商务等合作请联系

微信号:Lwcahnqz

邮箱:Naiquan_Z@outlook.com

最新文章

随机文章

基本 文件 流程 错误 SQL 调试
  1. 请求信息 : 2026-02-08 18:08:18 HTTP/2.0 GET : https://f.mffb.com.cn/a/461821.html
  2. 运行时间 : 0.105294s [ 吞吐率:9.50req/s ] 内存消耗:4,638.04kb 文件加载:140
  3. 缓存信息 : 0 reads,0 writes
  4. 会话信息 : SESSION_ID=07550044a72ec62326039f28a3f05f97
  1. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/public/index.php ( 0.79 KB )
  2. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/autoload.php ( 0.17 KB )
  3. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/autoload_real.php ( 2.49 KB )
  4. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/platform_check.php ( 0.90 KB )
  5. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/ClassLoader.php ( 14.03 KB )
  6. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/autoload_static.php ( 4.90 KB )
  7. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper.php ( 8.34 KB )
  8. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-validate/src/helper.php ( 2.19 KB )
  9. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/helper.php ( 1.47 KB )
  10. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/stubs/load_stubs.php ( 0.16 KB )
  11. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Exception.php ( 1.69 KB )
  12. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-container/src/Facade.php ( 2.71 KB )
  13. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/deprecation-contracts/function.php ( 0.99 KB )
  14. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/polyfill-mbstring/bootstrap.php ( 8.26 KB )
  15. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/polyfill-mbstring/bootstrap80.php ( 9.78 KB )
  16. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/var-dumper/Resources/functions/dump.php ( 1.49 KB )
  17. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-dumper/src/helper.php ( 0.18 KB )
  18. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/var-dumper/VarDumper.php ( 4.30 KB )
  19. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/App.php ( 15.30 KB )
  20. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-container/src/Container.php ( 15.76 KB )
  21. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/container/src/ContainerInterface.php ( 1.02 KB )
  22. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/provider.php ( 0.19 KB )
  23. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Http.php ( 6.04 KB )
  24. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper/Str.php ( 7.29 KB )
  25. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Env.php ( 4.68 KB )
  26. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/common.php ( 0.03 KB )
  27. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/helper.php ( 18.78 KB )
  28. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Config.php ( 5.54 KB )
  29. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/app.php ( 0.95 KB )
  30. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/cache.php ( 0.78 KB )
  31. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/console.php ( 0.23 KB )
  32. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/cookie.php ( 0.56 KB )
  33. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/database.php ( 2.48 KB )
  34. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/Env.php ( 1.67 KB )
  35. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/filesystem.php ( 0.61 KB )
  36. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/lang.php ( 0.91 KB )
  37. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/log.php ( 1.35 KB )
  38. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/middleware.php ( 0.19 KB )
  39. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/route.php ( 1.89 KB )
  40. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/session.php ( 0.57 KB )
  41. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/trace.php ( 0.34 KB )
  42. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/view.php ( 0.82 KB )
  43. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/event.php ( 0.25 KB )
  44. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Event.php ( 7.67 KB )
  45. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/service.php ( 0.13 KB )
  46. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/AppService.php ( 0.26 KB )
  47. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Service.php ( 1.64 KB )
  48. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Lang.php ( 7.35 KB )
  49. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/lang/zh-cn.php ( 13.70 KB )
  50. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/Error.php ( 3.31 KB )
  51. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/RegisterService.php ( 1.33 KB )
  52. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/services.php ( 0.14 KB )
  53. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/PaginatorService.php ( 1.52 KB )
  54. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/ValidateService.php ( 0.99 KB )
  55. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/ModelService.php ( 2.04 KB )
  56. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/Service.php ( 0.77 KB )
  57. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Middleware.php ( 6.72 KB )
  58. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/BootService.php ( 0.77 KB )
  59. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/Paginator.php ( 11.86 KB )
  60. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-validate/src/Validate.php ( 63.20 KB )
  61. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/Model.php ( 23.55 KB )
  62. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/Attribute.php ( 21.05 KB )
  63. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/AutoWriteData.php ( 4.21 KB )
  64. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/Conversion.php ( 6.44 KB )
  65. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/DbConnect.php ( 5.16 KB )
  66. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/ModelEvent.php ( 2.33 KB )
  67. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/RelationShip.php ( 28.29 KB )
  68. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/contract/Arrayable.php ( 0.09 KB )
  69. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/contract/Jsonable.php ( 0.13 KB )
  70. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/contract/Modelable.php ( 0.09 KB )
  71. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Db.php ( 2.88 KB )
  72. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/DbManager.php ( 8.52 KB )
  73. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Log.php ( 6.28 KB )
  74. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Manager.php ( 3.92 KB )
  75. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/log/src/LoggerTrait.php ( 2.69 KB )
  76. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/log/src/LoggerInterface.php ( 2.71 KB )
  77. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Cache.php ( 4.92 KB )
  78. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/simple-cache/src/CacheInterface.php ( 4.71 KB )
  79. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper/Arr.php ( 16.63 KB )
  80. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/cache/driver/File.php ( 7.84 KB )
  81. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/cache/Driver.php ( 9.03 KB )
  82. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/CacheHandlerInterface.php ( 1.99 KB )
  83. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/Request.php ( 0.09 KB )
  84. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Request.php ( 55.78 KB )
  85. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/middleware.php ( 0.25 KB )
  86. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Pipeline.php ( 2.61 KB )
  87. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/TraceDebug.php ( 3.40 KB )
  88. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/middleware/SessionInit.php ( 1.94 KB )
  89. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Session.php ( 1.80 KB )
  90. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/session/driver/File.php ( 6.27 KB )
  91. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/SessionHandlerInterface.php ( 0.87 KB )
  92. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/session/Store.php ( 7.12 KB )
  93. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Route.php ( 23.73 KB )
  94. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleName.php ( 5.75 KB )
  95. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Domain.php ( 2.53 KB )
  96. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleGroup.php ( 22.43 KB )
  97. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Rule.php ( 26.95 KB )
  98. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleItem.php ( 9.78 KB )
  99. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/route/app.php ( 1.72 KB )
  100. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/Route.php ( 4.70 KB )
  101. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/dispatch/Controller.php ( 4.74 KB )
  102. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Dispatch.php ( 10.44 KB )
  103. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/controller/Index.php ( 4.81 KB )
  104. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/BaseController.php ( 2.05 KB )
  105. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/facade/Db.php ( 0.93 KB )
  106. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/connector/Mysql.php ( 5.44 KB )
  107. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/PDOConnection.php ( 52.47 KB )
  108. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Connection.php ( 8.39 KB )
  109. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/ConnectionInterface.php ( 4.57 KB )
  110. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/builder/Mysql.php ( 16.58 KB )
  111. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Builder.php ( 24.06 KB )
  112. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/BaseBuilder.php ( 27.50 KB )
  113. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Query.php ( 15.71 KB )
  114. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/BaseQuery.php ( 45.13 KB )
  115. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/TimeFieldQuery.php ( 7.43 KB )
  116. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/AggregateQuery.php ( 3.26 KB )
  117. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ModelRelationQuery.php ( 20.07 KB )
  118. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ParamsBind.php ( 3.66 KB )
  119. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ResultOperation.php ( 7.01 KB )
  120. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/WhereQuery.php ( 19.37 KB )
  121. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/JoinAndViewQuery.php ( 7.11 KB )
  122. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/TableFieldInfo.php ( 2.63 KB )
  123. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/Transaction.php ( 2.77 KB )
  124. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/log/driver/File.php ( 5.96 KB )
  125. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/LogHandlerInterface.php ( 0.86 KB )
  126. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/log/Channel.php ( 3.89 KB )
  127. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/event/LogRecord.php ( 1.02 KB )
  128. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/Collection.php ( 16.47 KB )
  129. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/View.php ( 1.70 KB )
  130. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/View.php ( 4.39 KB )
  131. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Response.php ( 8.81 KB )
  132. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/response/View.php ( 3.29 KB )
  133. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Cookie.php ( 6.06 KB )
  134. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-view/src/Think.php ( 8.38 KB )
  135. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/TemplateHandlerInterface.php ( 1.60 KB )
  136. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/Template.php ( 46.61 KB )
  137. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/template/driver/File.php ( 2.41 KB )
  138. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/template/contract/DriverInterface.php ( 0.86 KB )
  139. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/runtime/temp/067d451b9a0c665040f3f1bdd3293d68.php ( 11.98 KB )
  140. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/Html.php ( 4.42 KB )
  1. CONNECT:[ UseTime:0.000481s ] mysql:host=127.0.0.1;port=3306;dbname=f_mffb;charset=utf8mb4
  2. SHOW FULL COLUMNS FROM `fenlei` [ RunTime:0.000680s ]
  3. SELECT * FROM `fenlei` WHERE `fid` = 0 [ RunTime:0.000276s ]
  4. SELECT * FROM `fenlei` WHERE `fid` = 63 [ RunTime:0.000319s ]
  5. SHOW FULL COLUMNS FROM `set` [ RunTime:0.000585s ]
  6. SELECT * FROM `set` [ RunTime:0.013950s ]
  7. SHOW FULL COLUMNS FROM `article` [ RunTime:0.000913s ]
  8. SELECT * FROM `article` WHERE `id` = 461821 LIMIT 1 [ RunTime:0.004267s ]
  9. UPDATE `article` SET `lasttime` = 1770545298 WHERE `id` = 461821 [ RunTime:0.006254s ]
  10. SELECT * FROM `fenlei` WHERE `id` = 66 LIMIT 1 [ RunTime:0.001372s ]
  11. SELECT * FROM `article` WHERE `id` < 461821 ORDER BY `id` DESC LIMIT 1 [ RunTime:0.000979s ]
  12. SELECT * FROM `article` WHERE `id` > 461821 ORDER BY `id` ASC LIMIT 1 [ RunTime:0.000441s ]
  13. SELECT * FROM `article` WHERE `id` < 461821 ORDER BY `id` DESC LIMIT 10 [ RunTime:0.000660s ]
  14. SELECT * FROM `article` WHERE `id` < 461821 ORDER BY `id` DESC LIMIT 10,10 [ RunTime:0.000674s ]
  15. SELECT * FROM `article` WHERE `id` < 461821 ORDER BY `id` DESC LIMIT 20,10 [ RunTime:0.000914s ]
0.106989s