项目介绍
本植物识别系统是一款基于深度学习技术的智能植物识别应用,旨在帮助用户快速、准确地识别各类植物。系统采用前后端分离架构,前端使用 Vue3 框架结合 Element Plus 组件库,提供美观、直观的用户界面;后端采用 Flask 轻量级 Web 框架,负责处理业务逻辑和数据交互;核心识别算法基于 TensorFlow 框架实现的 ResNet50 深度学习模型,具备强大的图像特征提取和分类能力。
选题背景与意义
随着生态环境的日益恶化和人们环保意识的不断提高,植物保护和研究工作变得越来越重要。然而,传统的植物识别方法主要依赖于植物学专家的经验和专业知识,效率低下且成本高昂,无法满足普通民众和非专业人员的需求。
近年来,深度学习技术的快速发展为植物识别提供了新的解决方案。卷积神经网络(CNN)在图像识别领域取得了显著的成果,ResNet50 作为其中的经典模型,具有强大的特征提取能力和分类精度。本项目正是基于这一技术背景,开发了一款易用、高效的智能植物识别系统。
演示视频
关键技术栈:ResNet50
ResNet50 是由微软研究院提出的一种深度残差网络结构,是 ResNet(Residual Neural Network)系列模型中的经典代表。它通过引入残差学习(Residual Learning)机制,有效地解决了深度神经网络训练过程中的梯度消失和梯度爆炸问题,使得网络可以达到更深的层数(50层),同时保持良好的训练效果。
ResNet50 的核心创新点在于残差块(Residual Block)的设计。传统的卷积神经网络在层数增加时会出现退化现象(Degradation),即随着网络深度的增加,训练误差和测试误差都会增加。ResNet 通过在网络中添加跳跃连接(Skip Connection),将输入直接与输出相加,使得网络可以学习残差映射(Residual Mapping),从而避免了退化问题。
技术架构图