当前位置:首页>python>Python用SQL处理CSV/Excel/JSON/Parquet:5种方案

Python用SQL处理CSV/Excel/JSON/Parquet:5种方案

  • 2026-01-20 18:40:48
Python用SQL处理CSV/Excel/JSON/Parquet:5种方案
早期跟项目小组分享pandas各种数据处理API,最后当我讲到pandasql案例时,大家都笑了:
能用SQL处理干嘛还要学这么多复杂的API。
本文介绍python语言使用SQL处理本地文件如下5种方案,对于熟悉SQL但又不想学复杂API的读友或有一定的帮助:

1. DuckDB - 最推荐的选择

2. Polars - 高性能数据处理

3. pandasql - 轻量级SQL查询

4. DataFusion - Apache Arrow的力量

5. dask-sql - 分布式大数据处理

文件类型涉及常见的TXT/CSV/Excel/JSON/Parquet。

    模块对比总览

    各模块文件格式支持对比

    模块
    CSV
    Excel
    JSON
    Parquet
    TXT
    DuckDB
    ✅*
    Polars
    pandasql
    DataFusion
    dask-sql
    ✅**

    * DuckDB需要安装Excel扩展;** dask-sql通过dask支持Excel,需安装额外依赖

    各模块核心特性对比

    模块
    性能
    SQL完整度
    易用性
    分布式
    推荐指数
    DuckDB⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
    ⭐⭐⭐⭐⭐
    Polars⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
    ⭐⭐⭐⭐⭐
    pandasql⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
    ⭐⭐⭐
    DataFusion⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
    ⭐⭐⭐⭐
    dask-sql⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
    ⭐⭐⭐⭐


    1. DuckDB

    模块简介

    DuckDB 是一个嵌入式分析型数据库,专为数据分析设计。它无需安装服务器,完全运行在本地进程中,被誉为"数据分析领域的SQLite"。

    核心特性

    • 零配置、零依赖,一行命令即可安装
    • 支持标准SQL语法,兼容PostgreSQL语法
    • 支持直接查询CSV、Parquet、JSON等文件,无需导入
    • 与Pandas DataFrame无缝集成
    • 列式存储引擎,查询性能卓越
    • 支持窗口函数、CTE、复杂聚合等高级SQL特性

    基于DuckDB封装的查询工具请访问如下文章:

    零部署本地SQL神器:基于DuckDB的文件直查GUI,千万数据秒级分析

    安装

    pip install duckdb

    数据读取

    读取CSV文件

    import duckdb# 直接查询文件result = duckdb.sql("SELECT * FROM 'data.csv' LIMIT 10").fetchall()# 使用连接对象con = duckdb.connect()df = con.execute("SELECT * FROM 'data.csv' WHERE age > 25").fetchdf()# 读取为Pandas DataFrameresult = duckdb.sql("SELECT * FROM 'data.csv'").df()

    读取Excel文件(Excel扩展安装和加载第一次执行一次即可)

    import duckdbcon = duckdb.connect()con.install_extension("excel")  # excel扩展第一次执行一次即可con.load_extension("excel")  # 只需执行一次# 读取Excel文件df = con.execute("SELECT * FROM 'data.xlsx'").fetchdf()# 指定工作表df = con.execute("SELECT * FROM read_excel('data.xlsx', sheet_name='Sheet1')").fetchdf()

    读取JSON文件

    import duckdb# 读取JSON文件df = duckdb.sql("SELECT * FROM 'data.json'").df()# 读取newline-delimited JSONdf = duckdb.sql("SELECT * FROM read_json_auto('data.ndjson')").df()

    读取Parquet文件

    import duckdb# 直接查询Parquet文件df = duckdb.sql("SELECT * FROM 'data.parquet'").df()# 读取多个Parquet文件df = duckdb.sql("SELECT * FROM read_parquet('*.parquet')").df()

    读取txt文件

    import duckdb# 读取固定格式的txt文件df = duckdb.sql("""    SELECT *    FROM read_csv('data.txt', delimiter='|', header=True)""").df()

    数据导出

    导出为CSV

    import duckdbcon = duckdb.connect()# COPY命令导出con.execute("""    COPY (SELECT * FROM 'data.parquet')    TO 'output.csv' (HEADER, DELIMITER ',')""")

    导出为Excel

    import duckdbcon = duckdb.connect()con.install_extension("excel")  # excel扩展第一次执行一次即可con.load_extension("excel")  # 第一次执行一次即可# 导出为Excelcon.execute("COPY (SELECT * FROM 'data.csv') TO 'output.xlsx')")

    导出为JSON

    import duckdb# 导出为JSONcon.sql("""    COPY (SELECT * FROM 'data.parquet')    TO 'output.json'""")

    导出为Parquet

    import duckdb# 导出为Parquet(推荐,性能最优)con.sql("""    COPY (SELECT * FROM 'data.csv')    TO 'output.parquet' (FORMAT 'parquet')""")

    导出为txt

    import duckdb# 导出为自定义分隔符的txtcon.sql("""    COPY (SELECT * FROM 'data.csv')    TO 'output.txt' (HEADER, DELIMITER '|')""")

    与Pandas DataFrame交互

    import duckdbimport pandas as pd# 创建Pandas DataFramedf_pd = pd.DataFrame({    'name': ['Alice', 'Bob', 'Charlie'],    'age': [25, 30, 35],    'city': ['NYC', 'LA', 'SF']})# 直接查询Pandas DataFrameresult = duckdb.sql("SELECT * FROM df_pd WHERE age > 25").df()# 注册为表con = duckdb.connect()con.register('users', df_pd)result = con.execute("SELECT * FROM users").fetchdf()

    2. Polars

    模块简介

    Polars 是一个基于Rust的高性能DataFrame库,采用向量化执行和惰性求值技术,在处理大数据时性能远超Pandas。内置SQLContext类,可直接使用SQL语句查询数据。

    核心特性

    • 极快的查询速度(比Pandas快5-10倍)
    • 内置SQLContext支持SQL查询
    • 惰性求值,自动优化查询计划(惰性加载,遇到collect才会触发,类似于spark)
    • 原生支持Apache Arrow格式
    • 多线程并行处理
    • 内存占用更低

    安装

    # 基础安装pip install polars# 完整安装(包含Excel支持)pip install 'polars[excel]'# 或安装所有可选依赖pip install 'polars[all]'

    数据读取

    读取CSV文件

    import polars as pl# 读取CSV,该方法会一次性加载所有数据到内存df = pl.read_csv("data.csv")# 懒加载(推荐用于大文件):推荐df_lazy = pl.scan_csv("data.csv")

    读取Excel文件

    import polars as pl# 读取Excel(默认使用fastexcel引擎)df = pl.read_excel("data.xlsx")# 指定工作表df = pl.read_excel("data.xlsx", sheet_name="Sheet1")# 指定引擎df = pl.read_excel("data.xlsx", engine="openpyxl")

    读取JSON文件

    import polars as pl# 读取JSONdf = pl.read_json("data.json")# 读取newline-delimited JSONdf = pl.read_ndjson("data.ndjson")

    读取Parquet文件

    import polars as pl# 读取Parquetdf = pl.read_parquet("data.parquet")# 懒加载Parquet(推荐)df_lazy = pl.scan_parquet("data.parquet")

    读取txt文件

    import polars as pl# 读取固定分隔符的txtdf = pl.read_csv("data.txt", separator="|", has_header=True)# 读取无表头的txtdf = pl.read_csv("data.txt", separator="\t", has_header=False,                 new_columns=["col1", "col2", "col3"])

    SQL查询示例

    import polars as pl# 读取数据df = pl.read_csv("data.csv")# 创建SQL上下文ctx = pl.SQLContext(register_globals=True)# 使用SQL查询result = ctx.execute("""    SELECT *    FROM df    WHERE age > 25    ORDER BY name DESC    LIMIT 10""").collect()# 多表JOINdf2 = pl.read_csv("orders.csv")ctx = pl.SQLContext(users=df, orders=df2)result = ctx.execute("""    SELECT u.name, o.amount    FROM users u    INNER JOIN orders o ON u.id = o.user_id    WHERE o.amount > 100""").collect()# 聚合查询result = ctx.execute("""    SELECT        city,        COUNT(*) as user_count,        AVG(age) as avg_age    FROM df    GROUP BY city    HAVING COUNT(*) > 5""").collect()

    数据导出

    导出为CSV

    import polars as pldf = pl.DataFrame({"a": [1, 2, 3], "b": ["x", "y", "z"]})# 基础导出df.write_csv("output.csv")# 带选项导出df.write_csv("output.csv", separator=";", include_header=True)

    导出为Excel

    import polars as pldf = pl.DataFrame({"name": ["Alice", "Bob"], "age": [25, 30]})# 导出为Exceldf.write_excel("output.xlsx")# 指定工作表名称df.write_excel("output.xlsx", worksheet="Users")

    导出为JSON

    import polars as pl# 导出为JSONdf.write_json("output.json")# 导出为newline-delimited JSONdf.write_ndjson("output.ndjson")

    导出为Parquet

    import polars as pl# 导出为Parquet(推荐)df.write_parquet("output.parquet")# 带压缩df.write_parquet("output.parquet", compression="snappy")

    导出为txt

    import polars as pl# 导出为txt(使用CSV函数,自定义分隔符)df.write_csv("output.txt", separator="|")

    与Pandas DataFrame交互

    import polars as plimport pandas as pd# Pandas → Polarsdf_pd = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})df_pl = pl.from_pandas(df_pd)# Polars → Pandasdf_pd_back = df_pl.to_pandas()# 使用SQL查询Pandas转换后的数据ctx = pl.SQLContext(data=df_pl)result = ctx.execute("SELECT * FROM data WHERE a > 1").collect()

    3. pandasql

    模块简介

    pandasql 是一个轻量级库,允许你在Pandas DataFrame上执行SQL查询。它的工作原理是将DataFrame加载到SQLite数据库中,然后执行SQL查询。

    核心特性

    • 语法简单,易于上手
    • 与Pandas无缝集成
    • 基于SQLite,支持标准SQL
    • 适合快速数据探索

    局限性

    • 性能不如DuckDB和Polars
    • 大数据集处理较慢
    • SQL功能受SQLite限制

    安装

    pip install pandasql

    数据读取

    pandasql本身不提供文件读取功能,需要先使用Pandas读取文件:

    import pandas as pdfrom pandasql import sqldf# 读取CSVdf = pd.read_csv("data.csv")# 读取Exceldf = pd.read_excel("data.xlsx")# 读取JSONdf = pd.read_json("data.json")# 读取Parquetdf = pd.read_parquet("data.parquet")# 读取txtdf = pd.read_csv("data.txt", sep="|", header=0)

    SQL查询

    from pandasql import sqldf# 定义查询函数pysqldf = lambda q: sqldf(q, globals())# 执行SQL查询result = pysqldf("SELECT * FROM df WHERE age > 25")# 复杂查询query = """SELECT    city,    AVG(age) as avg_age,    COUNT(*) as countFROM dfGROUP BY cityHAVING COUNT(*) > 1"""result = pysqldf(query)

    数据导出

    import pandas as pdfrom pandasql import sqldf# 查询后导出result = sqldf("SELECT * FROM df WHERE age > 25", globals())# 导出为CSVresult.to_csv("output.csv", index=False)# 导出为Excelresult.to_excel("output.xlsx", index=False)# 导出为JSONresult.to_json("output.json", orient="records")# 导出为Parquetresult.to_parquet("output.parquet")# 导出为txtresult.to_csv("output.txt", sep="|", index=False)

    与Pandas DataFrame交互

    import pandas as pdfrom pandasql import sqldf# 创建DataFramedf1 = pd.DataFrame({"id": [1, 2, 3], "name": ["A", "B", "C"]})df2 = pd.DataFrame({"id": [1, 2, 4], "value": [100, 200, 400]})# JOIN查询query = """SELECT df1.id, df1.name, df2.valueFROM df1LEFT JOIN df2 ON df1.id = df2.id"""result = sqldf(query, globals())# 结果仍然是Pandas DataFrameprint(type(result))  #

    4. DataFusion

    模块简介

    DataFusion 是Apache Arrow项目的一部分,是一个用Rust编写的查询引擎,提供了Python绑定。它专注于高性能数据分析。

    核心特性

    • 基于Apache Arrow,零拷贝数据交换
    • 支持SQL和DataFrame API
    • 查询优化器自动优化执行计划
    • 支持多种数据格式

    安装

    pip install datafusion

    数据读取

    读取CSV文件

    from datafusion import SessionContextctx = SessionContext()df = ctx.read_csv("data.csv")

    读取Parquet文件

    from datafusion import SessionContextctx = SessionContext()df = ctx.read_parquet("data.parquet")

    读取JSON文件

    from datafusion import SessionContextctx = SessionContext()df = ctx.read_json("data.json")

    读取txt文件

    from datafusion import SessionContextctx = SessionContext()# txt文件通过read_csv读取,指定分隔符df = ctx.read_csv("data.txt", delimiter="|", has_header=True)

    SQL查询

    from datafusion import SessionContextctx = SessionContext()# 读取数据ctx.register_csv("users", "data.csv")ctx.register_parquet("sales", "sales.parquet")# 执行SQL查询result = ctx.sql("""    SELECT u.*, s.amount    FROM users u    LEFT JOIN sales s ON u.id = s.user_id    WHERE u.age > 25""").show()

    数据导出

    导出为CSV

    from datafusion import SessionContextimport pyarrow.csv as csvctx = SessionContext()df = ctx.read_csv("data.csv")# 转为Arrow Table后导出table = df.collect().to_arrow()csv.write_csv(table, "output.csv")

    导出为Parquet

    from datafusion import SessionContextimport pyarrow.parquet as pqctx = SessionContext()df = ctx.read_csv("data.csv")table = df.collect().to_arrow()pq.write_table(table, "output.parquet")

    导出为JSON

    from datafusion import SessionContextctx = SessionContext()df = ctx.read_csv("data.csv")# 转为Pandas后导出JSONtable = df.collect().to_arrow()table.to_pandas().to_json("output.json", orient="records")

    导出为txt

    from datafusion import SessionContextimport pyarrow.csv as csvctx = SessionContext()df = ctx.read_csv("data.csv")table = df.collect().to_arrow()# 导出为自定义分隔符的txtcsv.write_csv(table, "output.txt", write_options=csv.WriteOptions(delimiter="|"))

    与Pandas DataFrame交互

    from datafusion import SessionContextimport pandas as pdimport pyarrow as pa# 创建Pandas DataFramedf_pd = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})# Pandas → DataFusionctx = SessionContext()table = pa.Table.from_pandas(df_pd)ctx.register_dataset("my_table", table)# SQL查询result = ctx.sql("SELECT * FROM my_table WHERE a > 1").collect()# DataFusion → Pandasdf_result = result.to_pandas()

    5. dask-sql

    模块简介

    dask-sql 是一个分布式SQL查询引擎,结合了Dask的分布式计算能力和SQL的易用性。

    核心特性

    • 支持分布式处理大数据
    • 兼容部分SQL标准
    • 与Dask生态系统集成
    • 支持多种数据源

    适用场景

    • 单机内存无法容纳的大数据集
    • 需要并行处理的计算任务

    安装

    pip install dask-sql

    数据读取

    读取CSV文件

    from dask_sql import Contextc = Context()c.create_table("users", "data.csv")

    读取Parquet文件

    from dask_sql import Contextc = Context()c.create_table("sales", "sales.parquet")

    读取JSON文件

    from dask_sql import Contextimport dask.dataframe as ddc = Context()df = dd.read_json("data.json")c.create_table("data", df)

    读取Excel文件

    from dask_sql import Contextimport dask.dataframe as ddc = Context()# 通过dask读取Exceldf = dd.read_excel("data.xlsx")c.create_table("data", df)

    读取txt文件

    from dask_sql import Contextimport dask.dataframe as ddc = Context()# txt文件通过read_csv读取df = dd.read_csv("data.txt", sep="|")c.create_table("data", df)

    SQL查询

    from dask_sql import Contextimport dask.dataframe as ddc = Context()# 注册表df = dd.read_csv("data.csv")c.create_table("users", df)# 执行SQL查询,sql语句字段不要使用 `` 包裹,可使用双引号:"销售额">100result = c.sql("""    SELECT        category,        AVG(value) as avg_value,        COUNT(*) as count    FROM users    GROUP BY category""")# 获取结果result_df = result.compute()

    数据导出

    导出为CSV

    from dask_sql import Contextimport dask.dataframe as ddc = Context()df = dd.read_csv("data.csv")c.create_table("data", df)result = c.sql("SELECT * FROM data WHERE value > 100")result.compute().to_csv("output*.csv", index=False)

    导出为Parquet

    from dask_sql import Contextimport dask.dataframe as ddc = Context()df = dd.read_csv("data.csv")c.create_table("data", df)result = c.sql("SELECT * FROM data WHERE value > 100")result.compute().to_parquet("output.parquet")

    导出为Excel

    from dask_sql import Contextimport dask.dataframe as ddc = Context()df = dd.read_csv("data.csv")c.create_table("data", df)result = c.sql("SELECT * FROM data WHERE value > 100")result.compute().to_excel("output.xlsx", index=False)

    导出为JSON

    from dask_sql import Contextimport dask.dataframe as ddc = Context()df = dd.read_csv("data.csv")c.create_table("data", df)result = c.sql("SELECT * FROM data WHERE value > 100")result.compute().to_json("output.json", orient="records")

    导出为txt

    from dask_sql import Contextimport dask.dataframe as ddc = Context()df = dd.read_csv("data.csv")c.create_table("data", df)result = c.sql("SELECT * FROM data WHERE value > 100")result.compute().to_csv("output.txt", sep="|", index=False)

    与Pandas DataFrame交互

    from dask_sql import Contextimport pandas as pd# 创建Pandas DataFramedf_pd = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})# 注册到dask-sqlc = Context()c.create_table("my_table", df_pd)# SQL查询result = c.sql("SELECT * FROM my_table WHERE a > 1")# 转回Pandasresult_df = result.compute()


    各模块适用场景

    模块
    最适合的场景
    不适合的场景
    DuckDB
    本地数据分析、快速原型开发、SQL重度用户
    需要GPU加速的场景
    Polars
    大数据处理、需要高性能的场景
    需要完整SQL支持
    pandasql
    快速数据探索、Pandas用户
    大数据处理、复杂SQL
    DataFusion
    Arrow生态用户、需要高性能
    需要丰富功能的场景
    dask-sql
    超大数据集、分布式计算
    小数据集(启动开销大)


    🏆 推荐选择

    🥇 首选:DuckDB

    • 最完整的SQL支持
    • 出色的性能
    • 简单易用
    • 活跃的社区和完善的文档

    🥈 次选:Polars

    • 极致的性能
    • 与Pandas兼容性好
    • 支持SQL(虽然不如DuckDB完整)
    • 适合处理大数据

    🥉 补充:pandasql

    • 如果你已经熟悉Pandas
    • 只需要简单的SQL查询
    • 数据量不大
    pandas api丰富,生态好。但对于大规模数据处理局限也很明显。
    对于像笔者这样熟悉SQL和pandas api的老用户,不想花过多时间去学习polars 数据处理api,可以先使用以上sql方案转化为小数据集再转化为pandas的DataFrame数据接口进行可视化等处理。

    -------------- 相关文档 --------------

    DuckDB

    • 官方文档:https://duckdb.org/docs/

    • Python API文档:https://duckdb.org/docs/stable/clients/python/overview

    • GitHub仓库:https://github.com/duckdb/duckdb

      Polars

    • 官方文档:https://docs.pola.rs/

    • SQL接口指南:https://docs.pola.rs/user-guide/sql/intro/

    • GitHub仓库:https://github.com/pola-rs/polars

    pandasql

    • GitHub仓库:https://github.com/yhat/pandasql

    • PyPI页面:https://pypi.org/project/pandasql/

    DataFusion

    • 官方文档:https://datafusion.apache.org/

    • Python文档:https://datafusion.apache.org/python/user-guide/

    • GitHub仓库:https://github.com/apache/datafusion-python

    dask-sql

    • 官方文档:https://dask-sql.readthedocs.io/

    • GitHub仓库:https://github.com/dask-contrib/dask-sql


    感谢各位朋友的点赞支持~
    本公众号聚焦Excel、VBA、SQL、Python、业务分析相关内容分享
    点击下方链接关注,持续为您呈现更多内容~

    最新文章

    随机文章

    基本 文件 流程 错误 SQL 调试
    1. 请求信息 : 2026-02-08 11:01:56 HTTP/2.0 GET : https://f.mffb.com.cn/a/464784.html
    2. 运行时间 : 0.093308s [ 吞吐率:10.72req/s ] 内存消耗:4,884.65kb 文件加载:140
    3. 缓存信息 : 0 reads,0 writes
    4. 会话信息 : SESSION_ID=aeb4186da317f1a60155e76c1ecb205e
    1. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/public/index.php ( 0.79 KB )
    2. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/autoload.php ( 0.17 KB )
    3. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/autoload_real.php ( 2.49 KB )
    4. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/platform_check.php ( 0.90 KB )
    5. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/ClassLoader.php ( 14.03 KB )
    6. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/composer/autoload_static.php ( 4.90 KB )
    7. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper.php ( 8.34 KB )
    8. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-validate/src/helper.php ( 2.19 KB )
    9. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/helper.php ( 1.47 KB )
    10. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/stubs/load_stubs.php ( 0.16 KB )
    11. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Exception.php ( 1.69 KB )
    12. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-container/src/Facade.php ( 2.71 KB )
    13. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/deprecation-contracts/function.php ( 0.99 KB )
    14. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/polyfill-mbstring/bootstrap.php ( 8.26 KB )
    15. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/polyfill-mbstring/bootstrap80.php ( 9.78 KB )
    16. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/var-dumper/Resources/functions/dump.php ( 1.49 KB )
    17. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-dumper/src/helper.php ( 0.18 KB )
    18. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/symfony/var-dumper/VarDumper.php ( 4.30 KB )
    19. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/App.php ( 15.30 KB )
    20. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-container/src/Container.php ( 15.76 KB )
    21. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/container/src/ContainerInterface.php ( 1.02 KB )
    22. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/provider.php ( 0.19 KB )
    23. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Http.php ( 6.04 KB )
    24. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper/Str.php ( 7.29 KB )
    25. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Env.php ( 4.68 KB )
    26. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/common.php ( 0.03 KB )
    27. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/helper.php ( 18.78 KB )
    28. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Config.php ( 5.54 KB )
    29. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/app.php ( 0.95 KB )
    30. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/cache.php ( 0.78 KB )
    31. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/console.php ( 0.23 KB )
    32. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/cookie.php ( 0.56 KB )
    33. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/database.php ( 2.48 KB )
    34. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/Env.php ( 1.67 KB )
    35. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/filesystem.php ( 0.61 KB )
    36. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/lang.php ( 0.91 KB )
    37. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/log.php ( 1.35 KB )
    38. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/middleware.php ( 0.19 KB )
    39. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/route.php ( 1.89 KB )
    40. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/session.php ( 0.57 KB )
    41. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/trace.php ( 0.34 KB )
    42. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/config/view.php ( 0.82 KB )
    43. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/event.php ( 0.25 KB )
    44. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Event.php ( 7.67 KB )
    45. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/service.php ( 0.13 KB )
    46. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/AppService.php ( 0.26 KB )
    47. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Service.php ( 1.64 KB )
    48. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Lang.php ( 7.35 KB )
    49. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/lang/zh-cn.php ( 13.70 KB )
    50. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/Error.php ( 3.31 KB )
    51. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/RegisterService.php ( 1.33 KB )
    52. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/services.php ( 0.14 KB )
    53. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/PaginatorService.php ( 1.52 KB )
    54. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/ValidateService.php ( 0.99 KB )
    55. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/service/ModelService.php ( 2.04 KB )
    56. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/Service.php ( 0.77 KB )
    57. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Middleware.php ( 6.72 KB )
    58. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/initializer/BootService.php ( 0.77 KB )
    59. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/Paginator.php ( 11.86 KB )
    60. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-validate/src/Validate.php ( 63.20 KB )
    61. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/Model.php ( 23.55 KB )
    62. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/Attribute.php ( 21.05 KB )
    63. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/AutoWriteData.php ( 4.21 KB )
    64. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/Conversion.php ( 6.44 KB )
    65. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/DbConnect.php ( 5.16 KB )
    66. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/ModelEvent.php ( 2.33 KB )
    67. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/concern/RelationShip.php ( 28.29 KB )
    68. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/contract/Arrayable.php ( 0.09 KB )
    69. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/contract/Jsonable.php ( 0.13 KB )
    70. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/model/contract/Modelable.php ( 0.09 KB )
    71. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Db.php ( 2.88 KB )
    72. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/DbManager.php ( 8.52 KB )
    73. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Log.php ( 6.28 KB )
    74. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Manager.php ( 3.92 KB )
    75. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/log/src/LoggerTrait.php ( 2.69 KB )
    76. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/log/src/LoggerInterface.php ( 2.71 KB )
    77. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Cache.php ( 4.92 KB )
    78. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/psr/simple-cache/src/CacheInterface.php ( 4.71 KB )
    79. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/helper/Arr.php ( 16.63 KB )
    80. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/cache/driver/File.php ( 7.84 KB )
    81. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/cache/Driver.php ( 9.03 KB )
    82. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/CacheHandlerInterface.php ( 1.99 KB )
    83. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/Request.php ( 0.09 KB )
    84. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Request.php ( 55.78 KB )
    85. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/middleware.php ( 0.25 KB )
    86. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Pipeline.php ( 2.61 KB )
    87. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/TraceDebug.php ( 3.40 KB )
    88. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/middleware/SessionInit.php ( 1.94 KB )
    89. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Session.php ( 1.80 KB )
    90. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/session/driver/File.php ( 6.27 KB )
    91. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/SessionHandlerInterface.php ( 0.87 KB )
    92. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/session/Store.php ( 7.12 KB )
    93. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Route.php ( 23.73 KB )
    94. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleName.php ( 5.75 KB )
    95. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Domain.php ( 2.53 KB )
    96. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleGroup.php ( 22.43 KB )
    97. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Rule.php ( 26.95 KB )
    98. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/RuleItem.php ( 9.78 KB )
    99. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/route/app.php ( 1.72 KB )
    100. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/Route.php ( 4.70 KB )
    101. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/dispatch/Controller.php ( 4.74 KB )
    102. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/route/Dispatch.php ( 10.44 KB )
    103. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/controller/Index.php ( 4.81 KB )
    104. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/app/BaseController.php ( 2.05 KB )
    105. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/facade/Db.php ( 0.93 KB )
    106. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/connector/Mysql.php ( 5.44 KB )
    107. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/PDOConnection.php ( 52.47 KB )
    108. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Connection.php ( 8.39 KB )
    109. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/ConnectionInterface.php ( 4.57 KB )
    110. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/builder/Mysql.php ( 16.58 KB )
    111. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Builder.php ( 24.06 KB )
    112. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/BaseBuilder.php ( 27.50 KB )
    113. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/Query.php ( 15.71 KB )
    114. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/BaseQuery.php ( 45.13 KB )
    115. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/TimeFieldQuery.php ( 7.43 KB )
    116. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/AggregateQuery.php ( 3.26 KB )
    117. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ModelRelationQuery.php ( 20.07 KB )
    118. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ParamsBind.php ( 3.66 KB )
    119. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/ResultOperation.php ( 7.01 KB )
    120. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/WhereQuery.php ( 19.37 KB )
    121. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/JoinAndViewQuery.php ( 7.11 KB )
    122. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/TableFieldInfo.php ( 2.63 KB )
    123. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-orm/src/db/concern/Transaction.php ( 2.77 KB )
    124. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/log/driver/File.php ( 5.96 KB )
    125. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/LogHandlerInterface.php ( 0.86 KB )
    126. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/log/Channel.php ( 3.89 KB )
    127. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/event/LogRecord.php ( 1.02 KB )
    128. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-helper/src/Collection.php ( 16.47 KB )
    129. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/facade/View.php ( 1.70 KB )
    130. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/View.php ( 4.39 KB )
    131. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Response.php ( 8.81 KB )
    132. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/response/View.php ( 3.29 KB )
    133. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/Cookie.php ( 6.06 KB )
    134. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-view/src/Think.php ( 8.38 KB )
    135. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/framework/src/think/contract/TemplateHandlerInterface.php ( 1.60 KB )
    136. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/Template.php ( 46.61 KB )
    137. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/template/driver/File.php ( 2.41 KB )
    138. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-template/src/template/contract/DriverInterface.php ( 0.86 KB )
    139. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/runtime/temp/067d451b9a0c665040f3f1bdd3293d68.php ( 11.98 KB )
    140. /yingpanguazai/ssd/ssd1/www/f.mffb.com.cn/vendor/topthink/think-trace/src/Html.php ( 4.42 KB )
    1. CONNECT:[ UseTime:0.000629s ] mysql:host=127.0.0.1;port=3306;dbname=f_mffb;charset=utf8mb4
    2. SHOW FULL COLUMNS FROM `fenlei` [ RunTime:0.000893s ]
    3. SELECT * FROM `fenlei` WHERE `fid` = 0 [ RunTime:0.000346s ]
    4. SELECT * FROM `fenlei` WHERE `fid` = 63 [ RunTime:0.000322s ]
    5. SHOW FULL COLUMNS FROM `set` [ RunTime:0.000540s ]
    6. SELECT * FROM `set` [ RunTime:0.000237s ]
    7. SHOW FULL COLUMNS FROM `article` [ RunTime:0.000654s ]
    8. SELECT * FROM `article` WHERE `id` = 464784 LIMIT 1 [ RunTime:0.000773s ]
    9. UPDATE `article` SET `lasttime` = 1770519716 WHERE `id` = 464784 [ RunTime:0.007090s ]
    10. SELECT * FROM `fenlei` WHERE `id` = 66 LIMIT 1 [ RunTime:0.000347s ]
    11. SELECT * FROM `article` WHERE `id` < 464784 ORDER BY `id` DESC LIMIT 1 [ RunTime:0.000507s ]
    12. SELECT * FROM `article` WHERE `id` > 464784 ORDER BY `id` ASC LIMIT 1 [ RunTime:0.004849s ]
    13. SELECT * FROM `article` WHERE `id` < 464784 ORDER BY `id` DESC LIMIT 10 [ RunTime:0.000949s ]
    14. SELECT * FROM `article` WHERE `id` < 464784 ORDER BY `id` DESC LIMIT 10,10 [ RunTime:0.003916s ]
    15. SELECT * FROM `article` WHERE `id` < 464784 ORDER BY `id` DESC LIMIT 20,10 [ RunTime:0.000855s ]
    0.094810s