#pragma once#include<iostream>#include<cstring>using namespace std;class MyString{public: static const int npos = -1; // 手动初始化 voidinit(char *s); /** * 构造函数(解决手动初始化问题) * 1、作用:初始化成员变量(属性)--->防止内存泄漏(成员变量有指针成员) * 2、特点:无返回值/函数名和类名相同/可以重载/自动调用(实例化对象) * 3、种类 * a/无参构造函数 * 默认无参构造函数:系统自动生成;若类中没有定义其它构造函数,系统默认生成 * b/有参构造函数:拷贝构造函数、类型转换构造函数、移动拷贝构造函数 * explicit:禁止发生隐式类型转换 --- 修饰带一个参数的构造函数 * 默认拷贝构造函数(浅拷贝):若类中没有定义拷贝构造函数,系统会默认生成; * ---------缺点(浅拷贝(成员变量里有指针成员)-----导致指针指向的同一空间被释放多次;--- 内存错误!):------实现方式:对象之间的成员互相赋值 * 解决问题的方式: * 自定义实现拷贝构造函数:实现深拷贝 * 拷贝构造函数 */ MyString(); // 无参构造函数 explicitMyString(constchar *p); // 有参构造函数 explicitMyString(constint &num); // 有指针成员的时候要用自定义拷贝构造函数,实现深拷贝 // MyString(const MyString &other); // 拷贝构造函数 MyString(MyString &other); // 拷贝构造函数 MyString(MyString &&other); // 移动拷贝构造函数(优化了,但不同编译器):实现深拷贝,必须要有移动拷贝 /** * 默认的 = 运算符重载函数:浅拷贝 * 移动 = 运算符重载 */ /** * 运算符重载: * 1、运算符重载的作用?代码更加简洁、提高了代码的可读性、体现了C++的可扩充性、运算符重载仅仅只是语法上的方便,它是另一种函数调用的方式、运算符重载本质上是函数重载 * 2、运算符重载的方式?规则? * 方式:成员函数重载和友元函数重载 * 规则:不允许发明新的运算符、不能改变运算符操作对象的个数、运算符被重载后其优先级和结核性不会改变 * 3、哪些运算符不能被重载:作用域解析运算符::、条件运算符? :、直接访问运算符.、类成员指针引用运算符.*、sizeof运算符 * 4、流运算符为什么只能友元方式重载:左侧运算量是cin或cout而不是对象本身,所以不满足后面一点,就只能申明为友元函数了 * 5、需要会实现一些特殊的运算符重载: ->、*、i++、++i、类型转换运算符 */ // 等号运算符重载函数 // MyString operator=(const MyString &other); MyString &operator=(MyString &other); // 接左值:拷贝 MyString &operator=(MyString &&other); // 接右值:移动 /** * 析构函数 * 1、作用:释放对象成员变量所指向的内存空间,防止内存泄漏 * 2、特点:自动调用(对象离开作用域)/函数名:~类名/无返回值/不能重载 */ // 运算符重载== bool operator==(const MyString &other); // 成员函数要调用const、non_const版本 bool operator>(const MyString &other); bool operator>(const MyString &other) const; // friend bool operator==(const MyString &s1, const MyString &s2); // 友元函数 ~MyString(); // friend bool operator>(const MyString &s1, const MyString &s2); char operator[](const int index); char operator[](const int index) const; friend MyString operator+(const MyString &s1, const MyString &s2); friend ostream &operator<<(ostream &out, const MyString &s); friend istream &operator>>(istream &in, MyString &s); // 类型转换运算符重载 operatorint() { return atoi(m_p); } // new / delete void *operatornew(size_t size) { cout << "operator new" << end; void *p = malloc(size); return p; } voidoperatordelete(void *p) { cout << "operator delete" << endl; free(p); p = nullptr; } // 成员函数 // 插入 // 删除 // 替换 // 查找 // 属性 // 迭代器 // 内置类:只能通过外类使用 class Iterator { public: Iterator(char *p) : m_p(p) { } Iterator &operator++() { m_p++; return *this; } Iterator operator++(int n) { Iterator temp(m_p); m_p++; return temp; } char operator*() { return *m_p; } bool operator!=(const Iterator &other) { return m_p != other.m_p; } bool operator==(const Iterator &other) { return m_p == other.m_p; } private: char *m_p; }; typedef Iterator iterator; typedef const char *const_iterator; class Reverse_iterator { public: Reverse_iterator(char *p) : m_p(p) { } Reverse_iterator &operator++() { m_p--; return *this; } Reverse_iterator operator++(int n) { Reverse_iterator temp(m_p); m_p--; return temp; } bool operator!=(const Reverse_iterator &other) { return m_p != other.m_p; } bool operator==(const Reverse_iterator &other) { return m_p == other.m_p; } char operator*() { return *m_p; } private: char *m_p; }; typedef Reverse_iterator reverse_iterator; iterator begin(); iterator end(); const_iterator cbegin(); const_iterator cend(); reverse_iterator rbegin(); reverse_iterator rend(); intsize(); constchar *c_str(); // 运算符重载private: char *m_p; // 野指针};
#include"my_string.h"MyString::MyString(){ cout << "MyString" << endl; m_p = nullptr;}MyString::MyString(const char *p){ cout << "MyString char *" << endl; // m_p = p; if (p != nullptr) { int len = strlen(p); m_p = new char[len + 1]; memcpy(m_p, p, len); } else { m_p = nullptr; }}MyString::MyString(const int &num){ cout << "MyString int" << endl; m_p = nullptr;}MyString::MyString(MyString &other) // 深拷贝{ cout << "MyString copy" << endl; if (other.m_p != nullptr) { int len = strlen(other.m_p); m_p = new char[len + 1]; memcpy(m_p, other.m_p, len); } else { m_p = nullptr; }}MyString::MyString(MyString &&other){ cout << "MyString move copy" << endl; m_p = other.m_p; other.m_p = nullptr;}MyString::~MyString(){ cout << "~MyString" << endl; if (m_p != nullptr) // 不能释放空 { delete[] m_p; } m_p = nullptr;}MyString &MyString::operator=(MyString &other){ cout << "MyString operator = " << endl; // m_p = other.m_p; // 浅拷贝 if (other.m_p != nullptr) { int len = strlen(other.m_p); m_p = new char[len + 1]; memcpy(m_p, other.m_p, len); } else { m_p = nullptr; } return *this; // 返回当前对象的返回值(copy)}MyString &MyString::operator=(MyString &&other){ cout << "MyString operator move = " << endl; m_p = other.m_p; // 浅拷贝 other.m_p = nullptr; return *this; // 返回当前对象的返回值(copy)}voidMyString::init(char *s){ m_p = s;}intMyString::size(){ return strlen(m_p);}constchar *MyString::c_str(){ return m_p;}MyString::iterator MyString::begin(){ return m_p;}MyString::iterator MyString::end(){ return m_p + size();}MyString::const_iterator MyString::cbegin(){ return m_p;}MyString::const_iterator MyString::cend(){ return m_p + size();}MyString::reverse_iterator MyString::rbegin(){ return Reverse_iterator(m_p + size());}MyString::reverse_iterator MyString::rend(){ return Reverse_iterator(m_p - 1);}// 运算符重载bool MyString::operator==(const MyString &other){ return strcmp(this->m_p, other.m_p) == 0 ? true : false; }bool MyString::operator>(const MyString &other){ return strcmp(this->m_p, other.m_p) > 0 ? true : false; }bool MyString::operator>(const MyString &other) const{ return strcmp(const_cast<MyString *>(this)->m_p, other.m_p) > 0 ? true : false; }char MyString::operator[](const int index){ return m_p[index];}char MyString::operator[](const int index) const{ return (const_cast<MyString *>(this))->m_p[index];}MyString operator+(const MyString &s1, const MyString &s2){ int len1 = 0; int len2 = 0; MyString temp; if (s1.m_p != nullptr) { len1 = strlen(s1.m_p); } if (s2.m_p != nullptr) { len2 = strlen(s2.m_p); } if (len1 + len2 > 0) { temp.m_p = new char[len1 + len2 + 1]; memset(temp.m_p, 0, len1 + len2 + 1); strcat(temp.m_p, s1.m_p); strcat(temp.m_p, s2.m_p); } return temp;}ostream &operator<<(ostream &out, const MyString &s){ out << "data: "; out << s.m_p; return out;}istream &operator>>(istream &in, MyString &s){ string s1; in >> s1; int len = strlen(s1.c_str()); s.m_p = new char[len + 1]; memcpy(s.m_p, s1.c_str(), len); return in;}// bool operator==(const MyString &s1, const MyString &s2)// {// return strcmp(s1.m_p, s2.m_p) == 0 ? true : false;// }// bool operator>(const MyString &s1, const MyString &s2)// {// return strcmp(s1.m_p, s2.m_p) > 0 ? true : false;// }
#include <iostream>#include "my_string.h"using namespace std;struct Student{ int m_num; string m_name; int age;};ostream &operator<<(ostream &out, const Student &stu){ out << "name = " << stu.m_name << endl; out << "num = " << stu.m_num << endl; out << "age = " << stu.age << endl; return out;}// 左右值引用:优点:解决了常引用的缺点voidtest(MyString &&str) // 用引用减少不必要的拷贝(接右值){}voidtest(MyString &str) // 接左值{}MyString get_str(){ MyString s1("hello"); return s1;}// 缺点:由于有const限定,在函数体内就不能有修改str的操作// void test(const MyString &str)// {// }voidtest(const MyString &s1, const MyString s2){ if (s1 > s2) { }}intmain(int argc, char **argv){#if 0 // MyString s1; // 对象存储模型,对象的大小是成员变量总和;成员函数被所有该类的对象共享的 MyString s1; // 自动调用构造函数:MyString(); char *p1 = new char[100]{"hello2"}; { MyString s2(p1); // MyString(char *p); } MyString s3(p1); // s1.init("hello world"); // 手动初始化;缺点:忘记初始化,后续使用容易造成内存泄漏 // s1.init(p1); string temp = "hello"; MyString s4(temp.data()); // MyString s5 = "hello world"; // 发生了隐式类型转换 // 缺点:不安全;歧义:误认s5是char *类型 // MyString s6 = 100; MyString s5("hello world"); MyString s6(5); // 什么时候调用拷贝构造函数?用已有对象初始化新的对象 MyString s7(s3); // MyString(MyString &other);#endif#if 0 char *p1 = new char[100]{"hello world"}; MyString s1(p1); MyString s2(s1); test(s2); // 按引用传递,减少不必要的拷贝 MyString s3; // s3 = s1; // 不调用拷贝构造函数,实际调 = 运算符重载函数 s3.operator=(s1);#endif#if 0 // 匿名对象/临时对象 // 左值:可以取地址/生命周期长 // 右值:不可以取地址/生命周期短(一条语句长度) // 左值引用:只能绑定左值/右值引用:只能绑定右值 MyString("hello world"); MyString s1("hello2"); MyString s2; s2 = MyString("hello"); // 移动(临死的对象还调用了深拷贝) test(s1); // 左值 test(MyString("hello")); // 右值引用不能绑定在左值上,加const可以#endif /** * 引用:减少不必要的拷贝(函数传参)---左值引用 * 右值引用:减少由临时对象产生的不必要的拷贝问题 */#if 0 char *p = new char[100]{"hello"}; MyString s1(p); MyString s2(s1); MyString s3(MyString(p));#endif#if 0 MyString temp = get_str(); // -fno-elide-constructors (关闭函数返回值优化)#endif#if 0 MyString s1("hello"); MyString s2("world"); if (s1 == s2) // if (s1.operator==(s2)) // if (operator==(s1, s2)) { cout << "s1 == s2" << endl; } else { cout << "s1 != s2" << endl; } // if (s1 > s2) if (s1.operator>(s2)) { cout << "s1 > s2" << endl; } else { cout << "s1 < s2" << endl; } test(s1, s2); MyString s3; s3 = s1 + s2; cout << s3.c_str() << endl; cout << s3 << endl; // 流运算符只能用友元函数重载,因为流运算符左操作数不是自定义类型,而是cout对象 // operator<<(operator<<(cout, s3), endl) Student stu = {1, "zhangsan", 20}; cout << stu; MyString temp; cin >> temp; cout << temp << endl; cout << temp[2] << endl;#endif#if 0 MyString s1("hello"); MyString s2("HELLO"); for (auto it = s1.begin(); it != s1.end(); it++) { cout << *it << endl; } for (auto it = s2.rbegin(); it != s2.rend(); ++it) { cout << *it << endl; }#endif MyString s("123"); int num = static_cast<int>(s); cout << num << endl; return 0;}