数学要素 全彩图解 + 微课 +Python 编程pdf电子书下载
这是一套前所未见的数学书,更是一套具备极高颜值的书。姜伟生博士自谦“小镇做题家”,实际上他是国际著名金融企业的金融科技专家。很难想象一位以“术数”为业的金融家具备如此彻底的分享动机,同时,姜博士有着卓越的艺术品位和设计能力,不仅承担了这套书的精深内容,更承担了全系图书的整体设计。希望读者从枯燥的常规数学书中解脱出来,赏心悦目地慢慢走入缤纷的数学宇宙。 数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙。不是所 有人生来都握有一副好牌,但是掌握“数学 编程 机器学习”是王牌。这次,学习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。为了让大家学数学、用数学,甚至爱上数学, 在创作这套书时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。 《数学要素:全彩图解 微课 Python编程》打破数学板块的藩篱,将算数、代数、线性代数、几何、解析几何、概率统计、微积分、优化方法等板块有机结合在一起。从加、减、乘、除四则运算讲起,主要内容包括:第 1、2 章讲解向量和矩阵的基本运算;第 3 章讲解常用几何知识;第 4 章讲解代数知识;第 5、6 两章介绍坐标系;第 7、8、9 三章介绍解析几何;第 10 章到第 14 章都是围绕函数展开;第 15 章到第 19 章讲解微积分以及优化问题内容;第20、21 两章是概率统计入门;《数学要素:全彩图解 微课 Python编程》后四章以线性代数收尾。 《数学要素:全彩图解 微课 Python编程》内容编排上突出“图解 编程 机器学习应用”。讲解一些特定数学工具时,《数学要素:全彩图解 微课 Python编程》会穿插介绍其在数据科学和机器学习领域应用场景,让大家学以致用。 显示全部信息 作者简介 姜伟生 博士 FRM。 勤奋的小镇做题家,热爱知识可视化和开源分享。自2022年8月开始,在GitHub上开源“鸢尾花书”学习资源,截至2023年4月,已经分享2000多页PDF、2000多幅矢量图、约1000个代码文件,全球读者数以万计。 绪论 1 1.2 数字分类:从复数到自然数 11 1.3 加减:基本的数学运算 15 1.4 向量:数字排成行、列 18 1.5 矩阵:数字排列成长方形 19 1.6 矩阵:一组列向量,或一组行向量 23 1.7 矩阵形状:每种形状都有特殊性质和用途 25 1.8 矩阵加减:形状相同,对应位置,批量加减 26 第2章 乘除 29 2.2 向量乘法:标量乘法、向量内积、逐项积 34 2.3 矩阵乘法:重要的线性代数运算规则 36 2.4 矩阵乘法视角 40 2.5 矩阵乘法第二视角 43 2.6 矩阵除法:计算逆矩阵 46 显示全部信息 感谢 首先感谢大家的信任。 作者仅仅是在学习应用数据科学和机器学习算法时,多读了几本数学书,多做了一些思考和知识整理而已。知者不言,言者不知。知者不博,博者不知。由于作者水平有限,斗胆把自己所学所思与大家分享,作者权当无知者无畏。希望大家在B站视频下方和Github多提意见,让这套书成为作者和读者共同参与创作的作品。 特别感谢清华大学出版社的栾大成老师。从选题策划、内容创作到装帧设计,栾老师事无巨细、一路陪伴。每次与栾老师交流,都能感受到他对优质作品的追求、对知识分享的热情。 曾几何时,考试是我们学习数学的动力。考试是头悬梁的绳,是锥刺股的锥。我们中的大多数人从小到大为各种考试埋头题海,数学味同嚼蜡,甚至让人恨之入骨。 数学给我们带来了无尽的“折磨”。我们甚至恐惧数学,憎恨数学,恨不得一走出校门就把数学抛之脑后,老死不相往来。